YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Synoptic Classification of Inflow-Generating Precipitation in the Snowy Mountains, Australia

    Source: Journal of Applied Meteorology and Climatology:;2015:;volume( 054 ):;issue: 008::page 1713
    Author:
    Theobald, Alison
    ,
    McGowan, Hamish
    ,
    Speirs, Johanna
    ,
    Callow, Nik
    DOI: 10.1175/JAMC-D-14-0278.1
    Publisher: American Meteorological Society
    Abstract: recipitation falling in the Snowy Mountains region of southeastern Australia provides fuel for hydroelectric power generation and environmental flows along major river systems, as well as critical water resources for agricultural irrigation. A synoptic climatology of daily precipitation that triggers a quantifiable increase in streamflow in the headwater catchments of the Snowy Mountains region is presented for the period 1958?2012. Here, previous synoptic-meteorological studies of the region are extended by using a longer-term, year-round precipitation and reanalysis dataset combined with a novel, automated synoptic-classification technique. A three-dimensional representation of synoptic circulation is developed by effectively combining meteorological variables through the depth of the troposphere. Eleven distinct synoptic types are identified, describing key circulation features and moisture pathways that deliver precipitation to the Snowy Mountains. Synoptic types with the highest precipitation totals are commonly associated with moisture pathways originating from the northeast and northwest of Australia. These systems generate the greatest precipitation totals across the westerly and high-elevation areas of the Snowy Mountains, but precipitation is reduced in the eastern-elevation areas in the lee of the mountain ranges. In eastern regions, synoptic types with onshore transport of humid air from the Tasman Sea are the major source of precipitation. Strong seasonality in synoptic types is evident, with frontal and cutoff-low types dominating in winter and inland heat troughs prevailing in summer. Interaction between tropical and extratropical systems is evident in all seasons.
    • Download: (4.594Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Synoptic Classification of Inflow-Generating Precipitation in the Snowy Mountains, Australia

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217455
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorTheobald, Alison
    contributor authorMcGowan, Hamish
    contributor authorSpeirs, Johanna
    contributor authorCallow, Nik
    date accessioned2017-06-09T16:50:39Z
    date available2017-06-09T16:50:39Z
    date copyright2015/08/01
    date issued2015
    identifier issn1558-8424
    identifier otherams-75151.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217455
    description abstractrecipitation falling in the Snowy Mountains region of southeastern Australia provides fuel for hydroelectric power generation and environmental flows along major river systems, as well as critical water resources for agricultural irrigation. A synoptic climatology of daily precipitation that triggers a quantifiable increase in streamflow in the headwater catchments of the Snowy Mountains region is presented for the period 1958?2012. Here, previous synoptic-meteorological studies of the region are extended by using a longer-term, year-round precipitation and reanalysis dataset combined with a novel, automated synoptic-classification technique. A three-dimensional representation of synoptic circulation is developed by effectively combining meteorological variables through the depth of the troposphere. Eleven distinct synoptic types are identified, describing key circulation features and moisture pathways that deliver precipitation to the Snowy Mountains. Synoptic types with the highest precipitation totals are commonly associated with moisture pathways originating from the northeast and northwest of Australia. These systems generate the greatest precipitation totals across the westerly and high-elevation areas of the Snowy Mountains, but precipitation is reduced in the eastern-elevation areas in the lee of the mountain ranges. In eastern regions, synoptic types with onshore transport of humid air from the Tasman Sea are the major source of precipitation. Strong seasonality in synoptic types is evident, with frontal and cutoff-low types dominating in winter and inland heat troughs prevailing in summer. Interaction between tropical and extratropical systems is evident in all seasons.
    publisherAmerican Meteorological Society
    titleA Synoptic Classification of Inflow-Generating Precipitation in the Snowy Mountains, Australia
    typeJournal Paper
    journal volume54
    journal issue8
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-14-0278.1
    journal fristpage1713
    journal lastpage1732
    treeJournal of Applied Meteorology and Climatology:;2015:;volume( 054 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian