YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Potential Predictability of Malaria in Africa Using ECMWF Monthly and Seasonal Climate Forecasts

    Source: Journal of Applied Meteorology and Climatology:;2014:;volume( 054 ):;issue: 003::page 521
    Author:
    Tompkins, Adrian M.
    ,
    Di Giuseppe, Francesca
    DOI: 10.1175/JAMC-D-14-0156.1
    Publisher: American Meteorological Society
    Abstract: dealized model experiments investigate the advance warning for malaria that may be presently possible using temperature and rainfall predictions from state-of-the-art operational monthly and seasonal weather-prediction systems. The climate forecasts drive a dynamical malaria model for all of Africa, and the predictions are evaluated using reanalysis data. The regions and months for which climate is responsible for significant interannual malaria transmission variability are first identified. In addition to epidemic-prone zones these also include hyperendemic regions subject to high variability during specific months of the year, often associated with the monsoon onset. In many of these areas, temperature anomalies are predictable from 1 to 2 months ahead, and reliable precipitation forecasts are available in eastern and southern Africa 1 month ahead. The inherent lag between the rainy seasons and malaria transmission results in potential predictability in malaria transmission 3?4 months in advance, extending the early warning available from environmental monitoring by 1?2 months, although the realizable forecast skill will be less than this because of an imperfect malaria model. A preliminary examination of the forecasts for the highlands of Uganda and Kenya shows that the system is able to predict the years during the last two decades in which documented highland outbreaks occurred, in particular the major event of 1998, but that the timing of outbreaks was often imprecise and inconsistent across lead times. In addition to country-level evaluation with district health data, issues that need addressing to integrate such a climate-based prediction system into health-decision processes are briefly discussed.
    • Download: (3.339Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Potential Predictability of Malaria in Africa Using ECMWF Monthly and Seasonal Climate Forecasts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217395
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorTompkins, Adrian M.
    contributor authorDi Giuseppe, Francesca
    date accessioned2017-06-09T16:50:29Z
    date available2017-06-09T16:50:29Z
    date copyright2015/03/01
    date issued2014
    identifier issn1558-8424
    identifier otherams-75097.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217395
    description abstractdealized model experiments investigate the advance warning for malaria that may be presently possible using temperature and rainfall predictions from state-of-the-art operational monthly and seasonal weather-prediction systems. The climate forecasts drive a dynamical malaria model for all of Africa, and the predictions are evaluated using reanalysis data. The regions and months for which climate is responsible for significant interannual malaria transmission variability are first identified. In addition to epidemic-prone zones these also include hyperendemic regions subject to high variability during specific months of the year, often associated with the monsoon onset. In many of these areas, temperature anomalies are predictable from 1 to 2 months ahead, and reliable precipitation forecasts are available in eastern and southern Africa 1 month ahead. The inherent lag between the rainy seasons and malaria transmission results in potential predictability in malaria transmission 3?4 months in advance, extending the early warning available from environmental monitoring by 1?2 months, although the realizable forecast skill will be less than this because of an imperfect malaria model. A preliminary examination of the forecasts for the highlands of Uganda and Kenya shows that the system is able to predict the years during the last two decades in which documented highland outbreaks occurred, in particular the major event of 1998, but that the timing of outbreaks was often imprecise and inconsistent across lead times. In addition to country-level evaluation with district health data, issues that need addressing to integrate such a climate-based prediction system into health-decision processes are briefly discussed.
    publisherAmerican Meteorological Society
    titlePotential Predictability of Malaria in Africa Using ECMWF Monthly and Seasonal Climate Forecasts
    typeJournal Paper
    journal volume54
    journal issue3
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-14-0156.1
    journal fristpage521
    journal lastpage540
    treeJournal of Applied Meteorology and Climatology:;2014:;volume( 054 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian