Radar-Derived Statistics of Convective Storms in Southeast QueenslandSource: Journal of Applied Meteorology and Climatology:;2015:;volume( 054 ):;issue: 010::page 1985Author:Peter, Justin R.
,
Manton, Michael J.
,
Potts, Rodney J.
,
May, Peter T.
,
Collis, Scott M.
,
Wilson, Louise
DOI: 10.1175/JAMC-D-13-0347.1Publisher: American Meteorological Society
Abstract: he aim of this study is to examine the statistics of convective storms and their concomitant changes with thermodynamic variability. The thermodynamic variability is analyzed by performing a cluster analysis on variables derived from radiosonde releases at Brisbane Airport in Australia. Three objectively defined regimes are found: a dry, stable regime with mainly westerly surface winds, a moist northerly regime, and a moist trade wind regime. S-band radar data are analyzed and storms are identified using objective tracking software [Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN)]. Storm statistics are then investigated, stratified by the regime subperiods. Convective storms are found to form and maintain along elevated topography. Probability distributions of convective storm size and rain rate are found to follow lognormal distributions with differing mean and variance among the regimes. There was some evidence of trimodal storm-top heights, located at the trade inversion (1.5?2 km), freezing level (3.6?4 km), and near 6 km, but it was dependent on the presence of the trade inversion. On average, storm volume and height are smallest in the trade regime and rain rate is largest in the westerly regime. However, westerly regime storms occur less frequently and have shorter lifetimes, which were attributed to the enhanced stability and decreased humidity profiles. Furthermore, time series of diurnal rain rate exhibited early morning and midafternoon maxima for the northerly and trade regimes but were absent for the westerly regime. The observations indicate that westerly regime storms are primarily driven by large-scale forcing, whereas northerly and trade wind regime storms are more responsive to surface characteristics.
|
Collections
Show full item record
contributor author | Peter, Justin R. | |
contributor author | Manton, Michael J. | |
contributor author | Potts, Rodney J. | |
contributor author | May, Peter T. | |
contributor author | Collis, Scott M. | |
contributor author | Wilson, Louise | |
date accessioned | 2017-06-09T16:50:02Z | |
date available | 2017-06-09T16:50:02Z | |
date copyright | 2015/10/01 | |
date issued | 2015 | |
identifier issn | 1558-8424 | |
identifier other | ams-74970.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4217253 | |
description abstract | he aim of this study is to examine the statistics of convective storms and their concomitant changes with thermodynamic variability. The thermodynamic variability is analyzed by performing a cluster analysis on variables derived from radiosonde releases at Brisbane Airport in Australia. Three objectively defined regimes are found: a dry, stable regime with mainly westerly surface winds, a moist northerly regime, and a moist trade wind regime. S-band radar data are analyzed and storms are identified using objective tracking software [Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN)]. Storm statistics are then investigated, stratified by the regime subperiods. Convective storms are found to form and maintain along elevated topography. Probability distributions of convective storm size and rain rate are found to follow lognormal distributions with differing mean and variance among the regimes. There was some evidence of trimodal storm-top heights, located at the trade inversion (1.5?2 km), freezing level (3.6?4 km), and near 6 km, but it was dependent on the presence of the trade inversion. On average, storm volume and height are smallest in the trade regime and rain rate is largest in the westerly regime. However, westerly regime storms occur less frequently and have shorter lifetimes, which were attributed to the enhanced stability and decreased humidity profiles. Furthermore, time series of diurnal rain rate exhibited early morning and midafternoon maxima for the northerly and trade regimes but were absent for the westerly regime. The observations indicate that westerly regime storms are primarily driven by large-scale forcing, whereas northerly and trade wind regime storms are more responsive to surface characteristics. | |
publisher | American Meteorological Society | |
title | Radar-Derived Statistics of Convective Storms in Southeast Queensland | |
type | Journal Paper | |
journal volume | 54 | |
journal issue | 10 | |
journal title | Journal of Applied Meteorology and Climatology | |
identifier doi | 10.1175/JAMC-D-13-0347.1 | |
journal fristpage | 1985 | |
journal lastpage | 2008 | |
tree | Journal of Applied Meteorology and Climatology:;2015:;volume( 054 ):;issue: 010 | |
contenttype | Fulltext |