YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diagnosing the Intercept Parameters of the Exponential Drop Size Distributions in a Single-Moment Microphysics Scheme and Impact on Supercell Storm Simulations

    Source: Journal of Applied Meteorology and Climatology:;2014:;volume( 053 ):;issue: 008::page 2072
    Author:
    Wainwright, Charlotte E.
    ,
    Dawson, Daniel T.
    ,
    Xue, Ming
    ,
    Zhang, Guifu
    DOI: 10.1175/JAMC-D-13-0251.1
    Publisher: American Meteorological Society
    Abstract: n this study, power-law relations are developed between the intercept parameter N0 of the exponential particle size distribution and the water content for the rain, hail, graupel, and snow hydrometeor categories within the Milbrandt and Yau microphysics scheme. Simulations of the 3 May 1999 Oklahoma tornadic supercell are performed using the diagnostic relations for rain only and alternately for all four precipitating species, and results are compared with those from the original fixed-N0 single- and double-moment versions of the scheme. Diagnosing N0 for rain is found to improve the results of the simulation in terms of reproducing the key features of the double-moment simulation while still retaining the computational efficiency of a single-moment scheme. Results more consistent with the double-moment scheme are seen in the general storm structure, the cold-pool structure and intensity, and the number concentration fields. Diagnosing the intercept parameters for all four species, including those for the ice species, within the single-moment scheme yields even closer agreement with the double-moment simulation results. The decreased cold-pool intensity is very similar to that produced by the double-moment simulation, as is the areal extent of the simulated storm. The diagnostic relations are also tested on a simulated squall line, with similar promising results. This study suggests that, when compared with traditional fixed intercept parameters used in typical single-moment microphysics schemes, results closer to a double-moment scheme can be obtained through the use of diagnostic relations for the parameters of the particle size distribution, with little extra computational cost.
    • Download: (3.922Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diagnosing the Intercept Parameters of the Exponential Drop Size Distributions in a Single-Moment Microphysics Scheme and Impact on Supercell Storm Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217206
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorWainwright, Charlotte E.
    contributor authorDawson, Daniel T.
    contributor authorXue, Ming
    contributor authorZhang, Guifu
    date accessioned2017-06-09T16:49:55Z
    date available2017-06-09T16:49:55Z
    date copyright2014/08/01
    date issued2014
    identifier issn1558-8424
    identifier otherams-74927.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217206
    description abstractn this study, power-law relations are developed between the intercept parameter N0 of the exponential particle size distribution and the water content for the rain, hail, graupel, and snow hydrometeor categories within the Milbrandt and Yau microphysics scheme. Simulations of the 3 May 1999 Oklahoma tornadic supercell are performed using the diagnostic relations for rain only and alternately for all four precipitating species, and results are compared with those from the original fixed-N0 single- and double-moment versions of the scheme. Diagnosing N0 for rain is found to improve the results of the simulation in terms of reproducing the key features of the double-moment simulation while still retaining the computational efficiency of a single-moment scheme. Results more consistent with the double-moment scheme are seen in the general storm structure, the cold-pool structure and intensity, and the number concentration fields. Diagnosing the intercept parameters for all four species, including those for the ice species, within the single-moment scheme yields even closer agreement with the double-moment simulation results. The decreased cold-pool intensity is very similar to that produced by the double-moment simulation, as is the areal extent of the simulated storm. The diagnostic relations are also tested on a simulated squall line, with similar promising results. This study suggests that, when compared with traditional fixed intercept parameters used in typical single-moment microphysics schemes, results closer to a double-moment scheme can be obtained through the use of diagnostic relations for the parameters of the particle size distribution, with little extra computational cost.
    publisherAmerican Meteorological Society
    titleDiagnosing the Intercept Parameters of the Exponential Drop Size Distributions in a Single-Moment Microphysics Scheme and Impact on Supercell Storm Simulations
    typeJournal Paper
    journal volume53
    journal issue8
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-13-0251.1
    journal fristpage2072
    journal lastpage2090
    treeJournal of Applied Meteorology and Climatology:;2014:;volume( 053 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian