YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Subkilometer Numerical Weather Prediction in an Urban Coastal Area: A Case Study over the Vancouver Metropolitan Area

    Source: Journal of Applied Meteorology and Climatology:;2014:;volume( 053 ):;issue: 006::page 1433
    Author:
    Leroyer, Sylvie
    ,
    Bélair, Stéphane
    ,
    Husain, Syed Z.
    ,
    Mailhot, Jocelyn
    DOI: 10.1175/JAMC-D-13-0202.1
    Publisher: American Meteorological Society
    Abstract: umerical weather prediction is moving toward the representation of finescale processes such as the interactions between the sea-breeze flow and urban processes. This study investigates the ability and necessity of using kilometer- to subkilometer-scale numerical simulations with the Canadian urban modeling system over the complex urban coastal area of Vancouver, British Columbia, Canada, during a sea-breeze event. Observations over the densely urbanized areas, collected from the Environmental Prediction in Canadian Cities (EPiCC) network and from satellite imagery, are used to evaluate several aspects of the urban boundary layer features simulated in three model configurations with different grid spacings (2.5 km, 1 km, and 250 m). In agreement with the observations, results from the numerical experiments with 1-km and 250-m grid spacings suggest that two sea-breeze flows converge over the residential areas of Vancouver. The resulting convergence line oscillates around the hill ridge, depending on thermal contrast and flow strength. This propagation mode impacts the growing urban boundary layer, with the presence of subsidence and entrainment events. Urban-induced circulation is superimposed with the sea-breeze circulation and realistically slows down the propagation of the sea-breeze front to the south. A clear improvement is obtained for numerical experiments with 1-km instead of 2.5-km grid spacing. The use of subkilometer grid spacing provides a more detailed representation of the surface thermal forcing and of local circulations, with results more sensitive to the airflow variability and, thus, to the location of measurement sites. Joint analyses of kilometer- and subkilometer-scale numerical experiments are thus recommended for different environmental applications.
    • Download: (4.494Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Subkilometer Numerical Weather Prediction in an Urban Coastal Area: A Case Study over the Vancouver Metropolitan Area

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217184
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorLeroyer, Sylvie
    contributor authorBélair, Stéphane
    contributor authorHusain, Syed Z.
    contributor authorMailhot, Jocelyn
    date accessioned2017-06-09T16:49:52Z
    date available2017-06-09T16:49:52Z
    date copyright2014/06/01
    date issued2014
    identifier issn1558-8424
    identifier otherams-74907.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217184
    description abstractumerical weather prediction is moving toward the representation of finescale processes such as the interactions between the sea-breeze flow and urban processes. This study investigates the ability and necessity of using kilometer- to subkilometer-scale numerical simulations with the Canadian urban modeling system over the complex urban coastal area of Vancouver, British Columbia, Canada, during a sea-breeze event. Observations over the densely urbanized areas, collected from the Environmental Prediction in Canadian Cities (EPiCC) network and from satellite imagery, are used to evaluate several aspects of the urban boundary layer features simulated in three model configurations with different grid spacings (2.5 km, 1 km, and 250 m). In agreement with the observations, results from the numerical experiments with 1-km and 250-m grid spacings suggest that two sea-breeze flows converge over the residential areas of Vancouver. The resulting convergence line oscillates around the hill ridge, depending on thermal contrast and flow strength. This propagation mode impacts the growing urban boundary layer, with the presence of subsidence and entrainment events. Urban-induced circulation is superimposed with the sea-breeze circulation and realistically slows down the propagation of the sea-breeze front to the south. A clear improvement is obtained for numerical experiments with 1-km instead of 2.5-km grid spacing. The use of subkilometer grid spacing provides a more detailed representation of the surface thermal forcing and of local circulations, with results more sensitive to the airflow variability and, thus, to the location of measurement sites. Joint analyses of kilometer- and subkilometer-scale numerical experiments are thus recommended for different environmental applications.
    publisherAmerican Meteorological Society
    titleSubkilometer Numerical Weather Prediction in an Urban Coastal Area: A Case Study over the Vancouver Metropolitan Area
    typeJournal Paper
    journal volume53
    journal issue6
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-13-0202.1
    journal fristpage1433
    journal lastpage1453
    treeJournal of Applied Meteorology and Climatology:;2014:;volume( 053 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian