YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis and Characterization of Probability Distribution and Small-Scale Spatial Variability of Rainfall in Singapore Using a Dense Gauge Network

    Source: Journal of Applied Meteorology and Climatology:;2013:;volume( 052 ):;issue: 012::page 2781
    Author:
    Mandapaka, Pradeep V.
    ,
    Qin, Xiaosheng
    DOI: 10.1175/JAMC-D-13-0115.1
    Publisher: American Meteorological Society
    Abstract: ourly rainfall measurements from a network of 49 rain gauges on the tropical island of Singapore are analyzed to characterize variability of rainfall for temporal and spatial scales ranging from 1 to 24 h and from 1 to 45 km, respectively. First, the probability distributions of rain rates are characterized using the method of L moments. The analysis showed that the Pearson type-3 (PE3) distribution best fitted the rain rates for all time scales of concern. The parameters of the PE3 distribution are found to be related to the time scale through simple power laws. Second, the spatial structure of rainfall is characterized using spatial correlations. The decay of correlations with intergauge distance is parameterized using a powered-exponential function. In general, the e-folding correlation distance (distance at which the correlation drops to 1/e) varied from 10 km at hourly scales to 33 km at daily scales. The study also examined diurnal, seasonal, and anisotropic patterns in the spatial correlation structure of rainfall. The rainfall patterns are smoothest in December and January and are most variable in February, April, and October. Diurnal analysis of spatial correlations showed that the rainfall patterns are smoothest in the early hours between 0100 and 0600 local time and are most variable during the afternoon between 1500 and 1900 local time. The results also showed complex anisotropic patterns in spatial correlations, with considerable dependence of rainfall orientation on spatial scale and the time of the year.
    • Download: (3.289Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis and Characterization of Probability Distribution and Small-Scale Spatial Variability of Rainfall in Singapore Using a Dense Gauge Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217135
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorMandapaka, Pradeep V.
    contributor authorQin, Xiaosheng
    date accessioned2017-06-09T16:49:44Z
    date available2017-06-09T16:49:44Z
    date copyright2013/12/01
    date issued2013
    identifier issn1558-8424
    identifier otherams-74863.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217135
    description abstractourly rainfall measurements from a network of 49 rain gauges on the tropical island of Singapore are analyzed to characterize variability of rainfall for temporal and spatial scales ranging from 1 to 24 h and from 1 to 45 km, respectively. First, the probability distributions of rain rates are characterized using the method of L moments. The analysis showed that the Pearson type-3 (PE3) distribution best fitted the rain rates for all time scales of concern. The parameters of the PE3 distribution are found to be related to the time scale through simple power laws. Second, the spatial structure of rainfall is characterized using spatial correlations. The decay of correlations with intergauge distance is parameterized using a powered-exponential function. In general, the e-folding correlation distance (distance at which the correlation drops to 1/e) varied from 10 km at hourly scales to 33 km at daily scales. The study also examined diurnal, seasonal, and anisotropic patterns in the spatial correlation structure of rainfall. The rainfall patterns are smoothest in December and January and are most variable in February, April, and October. Diurnal analysis of spatial correlations showed that the rainfall patterns are smoothest in the early hours between 0100 and 0600 local time and are most variable during the afternoon between 1500 and 1900 local time. The results also showed complex anisotropic patterns in spatial correlations, with considerable dependence of rainfall orientation on spatial scale and the time of the year.
    publisherAmerican Meteorological Society
    titleAnalysis and Characterization of Probability Distribution and Small-Scale Spatial Variability of Rainfall in Singapore Using a Dense Gauge Network
    typeJournal Paper
    journal volume52
    journal issue12
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-13-0115.1
    journal fristpage2781
    journal lastpage2796
    treeJournal of Applied Meteorology and Climatology:;2013:;volume( 052 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian