YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset

    Source: Journal of Applied Meteorology and Climatology:;2013:;volume( 052 ):;issue: 009::page 2162
    Author:
    Dolan, Brenda
    ,
    Rutledge, Steven A.
    ,
    Lim, S.
    ,
    Chandrasekar, V.
    ,
    Thurai, M.
    DOI: 10.1175/JAMC-D-12-0275.1
    Publisher: American Meteorological Society
    Abstract: new 10-category, polarimetric-based hydrometeor identification algorithm (HID) for C band is developed from theoretical scattering simulations including wet snow, hail, and big drops/melting hail. The HID is applied to data from seven wet seasons in Darwin, Australia, using the polarimetric C-band (C-POL) radar, to investigate microphysical differences between monsoon and break periods. Scattering simulations reveal significant Mie effects with large hail (diameter > 1.5 cm), with reduced reflectivity and enhanced differential reflectivity Zdr and specific differential phase Kdp relative to those associated with S band. Wet snow is found to be associated with greatly depreciated correlation coefficient ?hv and moderate values of Zdr. It is noted that large oblate liquid drops can produce the same electromagnetic signatures at C band as melting hail falling quasi stably, resulting in some ambiguity in the HID retrievals. Application of the new HID to seven seasons of C-POL data reveals that hail and big drops/melting hail occur much more frequently during break periods than during monsoon periods. Break periods have a high frequency of vertically aligned ice above 12 km, suggesting the presence of strong electric fields. Reflectivity and mean drop diameter D0 statistics demonstrate that convective areas in both monsoon and break periods may have robust coalescence or melting precipitation ice processes, leading to enhanced reflectivity and broader distributions of D0. Conversely, for stratiform regions in both regimes, mean reflectivity decreases below the melting level, indicative of evaporative processes. Break periods also have larger ice water path fractions, indicating substantial mixed-phase precipitation generation as compared with monsoonal periods. In monsoon periods, a larger percentage of precipitation is produced through warm-rain processes.
    • Download: (4.999Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217043
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorDolan, Brenda
    contributor authorRutledge, Steven A.
    contributor authorLim, S.
    contributor authorChandrasekar, V.
    contributor authorThurai, M.
    date accessioned2017-06-09T16:49:27Z
    date available2017-06-09T16:49:27Z
    date copyright2013/09/01
    date issued2013
    identifier issn1558-8424
    identifier otherams-74781.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217043
    description abstractnew 10-category, polarimetric-based hydrometeor identification algorithm (HID) for C band is developed from theoretical scattering simulations including wet snow, hail, and big drops/melting hail. The HID is applied to data from seven wet seasons in Darwin, Australia, using the polarimetric C-band (C-POL) radar, to investigate microphysical differences between monsoon and break periods. Scattering simulations reveal significant Mie effects with large hail (diameter > 1.5 cm), with reduced reflectivity and enhanced differential reflectivity Zdr and specific differential phase Kdp relative to those associated with S band. Wet snow is found to be associated with greatly depreciated correlation coefficient ?hv and moderate values of Zdr. It is noted that large oblate liquid drops can produce the same electromagnetic signatures at C band as melting hail falling quasi stably, resulting in some ambiguity in the HID retrievals. Application of the new HID to seven seasons of C-POL data reveals that hail and big drops/melting hail occur much more frequently during break periods than during monsoon periods. Break periods have a high frequency of vertically aligned ice above 12 km, suggesting the presence of strong electric fields. Reflectivity and mean drop diameter D0 statistics demonstrate that convective areas in both monsoon and break periods may have robust coalescence or melting precipitation ice processes, leading to enhanced reflectivity and broader distributions of D0. Conversely, for stratiform regions in both regimes, mean reflectivity decreases below the melting level, indicative of evaporative processes. Break periods also have larger ice water path fractions, indicating substantial mixed-phase precipitation generation as compared with monsoonal periods. In monsoon periods, a larger percentage of precipitation is produced through warm-rain processes.
    publisherAmerican Meteorological Society
    titleA Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset
    typeJournal Paper
    journal volume52
    journal issue9
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-12-0275.1
    journal fristpage2162
    journal lastpage2186
    treeJournal of Applied Meteorology and Climatology:;2013:;volume( 052 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian