YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Polygon-Based Line-Integral Method for Calculating Vorticity, Divergence, and Deformation from Nonuniform Observations

    Source: Journal of Applied Meteorology and Climatology:;2013:;volume( 052 ):;issue: 006::page 1511
    Author:
    Helms, Charles N.
    ,
    Hart, Robert E.
    DOI: 10.1175/JAMC-D-12-0248.1
    Publisher: American Meteorological Society
    Abstract: raditional observational analysis of derivative-based variables (e.g., vorticity) usually relies on interpolating observations and evaluating spatial derivatives either on a Cartesian grid or on a spherical grid. Great care must be taken in selecting the domain and the interpolation scheme to properly represent the features. There exist a number of alternative methods of calculating such variables by evaluating line integrals on triangular regions according to Green?s theorem. Since these methods rely on only three observations to perform calculations, they are overly sensitive to observations dominated by local phenomena as well as instrument noise. A few studies have attempted to minimize the impact of nonrepresentative or noisy observations by using higher-order polygons, but they have been limited to fitting regular polygons to near-regularly gridded data. The current study describes a new approach to calculating these fields by constructing higher-order polygons from a triangle tessellation and then applying Green?s theorem. Since the polygons are constructed using an automated triangle tessellation, the polygon construction process can proceed without the need for uniformly spaced data. The triangle tessellation employed here is unique for a given set of points, generating easily reproducible results. In addition, this method reduces the impact of noise associated with individual observations with only a minor loss in the length of the resolvable scale. An error analysis of the proposed method shows a large decrease in errors in comparison with purely triangle-based calculations. These improvements are present with a variety of data distributions (random and along research aircraft flight paths) and kinematic variables (vorticity, divergence, and deformation).
    • Download: (3.511Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Polygon-Based Line-Integral Method for Calculating Vorticity, Divergence, and Deformation from Nonuniform Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217029
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorHelms, Charles N.
    contributor authorHart, Robert E.
    date accessioned2017-06-09T16:49:25Z
    date available2017-06-09T16:49:25Z
    date copyright2013/06/01
    date issued2013
    identifier issn1558-8424
    identifier otherams-74768.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217029
    description abstractraditional observational analysis of derivative-based variables (e.g., vorticity) usually relies on interpolating observations and evaluating spatial derivatives either on a Cartesian grid or on a spherical grid. Great care must be taken in selecting the domain and the interpolation scheme to properly represent the features. There exist a number of alternative methods of calculating such variables by evaluating line integrals on triangular regions according to Green?s theorem. Since these methods rely on only three observations to perform calculations, they are overly sensitive to observations dominated by local phenomena as well as instrument noise. A few studies have attempted to minimize the impact of nonrepresentative or noisy observations by using higher-order polygons, but they have been limited to fitting regular polygons to near-regularly gridded data. The current study describes a new approach to calculating these fields by constructing higher-order polygons from a triangle tessellation and then applying Green?s theorem. Since the polygons are constructed using an automated triangle tessellation, the polygon construction process can proceed without the need for uniformly spaced data. The triangle tessellation employed here is unique for a given set of points, generating easily reproducible results. In addition, this method reduces the impact of noise associated with individual observations with only a minor loss in the length of the resolvable scale. An error analysis of the proposed method shows a large decrease in errors in comparison with purely triangle-based calculations. These improvements are present with a variety of data distributions (random and along research aircraft flight paths) and kinematic variables (vorticity, divergence, and deformation).
    publisherAmerican Meteorological Society
    titleA Polygon-Based Line-Integral Method for Calculating Vorticity, Divergence, and Deformation from Nonuniform Observations
    typeJournal Paper
    journal volume52
    journal issue6
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-12-0248.1
    journal fristpage1511
    journal lastpage1521
    treeJournal of Applied Meteorology and Climatology:;2013:;volume( 052 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian