YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    paNTICA: A Fast 3D Radiative Transfer Scheme to Calculate Surface Solar Irradiance for NWP and LES Models

    Source: Journal of Applied Meteorology and Climatology:;2013:;volume( 052 ):;issue: 008::page 1698
    Author:
    Wissmeier, Ulrike
    ,
    Buras, Robert
    ,
    Mayer, Bernhard
    DOI: 10.1175/JAMC-D-12-0227.1
    Publisher: American Meteorological Society
    Abstract: he resolution of numerical weather prediction models is constantly increasing, making it necessary to consider three-dimensional radiative transfer effects such as cloud shadows cast into neighboring grid cells and thus affecting radiative heating. For that purpose, fast approximations are needed since three-dimensional radiative transfer solvers are computationally far too expensive. For the solar spectral range, different approaches of how to consider three-dimensional effects were presented in the past?in particular, the tilted independent column approximation (TICA), which aims at improving the calculation of the direct radiation, and the nonlocal tilted independent column approximation (NTICA), which is used to additionally correct the diffuse radiation. Here a new version of NTICA is presented that?in contrast to earlier approaches?is applicable for a variety of cloud scenes and grid resolutions and for arbitrary solar zenith angles. This new parameterization for the diffuse irradiance is then applied to the two different TICA approaches and the results are compared with a full 3D Monte Carlo calculation. It is shown that both approaches strongly improve the calculation of radiation fluxes if the new parameterization for the diffuse irradiance?what the authors call ?parameterized NTICA (paNTICA)??is applied. It is found that the method in which TICA is only applied to direct radiation yields the better results. The studies show that consideration of three-dimensional effects is inevitable if higher model resolutions are used in the future. This paper proposes ways to consider these effects and, thus, to substantially reduce the errors made with one-dimensional radiative transfer solvers.
    • Download: (2.196Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      paNTICA: A Fast 3D Radiative Transfer Scheme to Calculate Surface Solar Irradiance for NWP and LES Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217014
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorWissmeier, Ulrike
    contributor authorBuras, Robert
    contributor authorMayer, Bernhard
    date accessioned2017-06-09T16:49:22Z
    date available2017-06-09T16:49:22Z
    date copyright2013/08/01
    date issued2013
    identifier issn1558-8424
    identifier otherams-74754.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217014
    description abstracthe resolution of numerical weather prediction models is constantly increasing, making it necessary to consider three-dimensional radiative transfer effects such as cloud shadows cast into neighboring grid cells and thus affecting radiative heating. For that purpose, fast approximations are needed since three-dimensional radiative transfer solvers are computationally far too expensive. For the solar spectral range, different approaches of how to consider three-dimensional effects were presented in the past?in particular, the tilted independent column approximation (TICA), which aims at improving the calculation of the direct radiation, and the nonlocal tilted independent column approximation (NTICA), which is used to additionally correct the diffuse radiation. Here a new version of NTICA is presented that?in contrast to earlier approaches?is applicable for a variety of cloud scenes and grid resolutions and for arbitrary solar zenith angles. This new parameterization for the diffuse irradiance is then applied to the two different TICA approaches and the results are compared with a full 3D Monte Carlo calculation. It is shown that both approaches strongly improve the calculation of radiation fluxes if the new parameterization for the diffuse irradiance?what the authors call ?parameterized NTICA (paNTICA)??is applied. It is found that the method in which TICA is only applied to direct radiation yields the better results. The studies show that consideration of three-dimensional effects is inevitable if higher model resolutions are used in the future. This paper proposes ways to consider these effects and, thus, to substantially reduce the errors made with one-dimensional radiative transfer solvers.
    publisherAmerican Meteorological Society
    titlepaNTICA: A Fast 3D Radiative Transfer Scheme to Calculate Surface Solar Irradiance for NWP and LES Models
    typeJournal Paper
    journal volume52
    journal issue8
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-12-0227.1
    journal fristpage1698
    journal lastpage1715
    treeJournal of Applied Meteorology and Climatology:;2013:;volume( 052 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian