YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Regional Variability within Global-Scale Relations between Passive Microwave Signatures and Raining Clouds over the Tropical Oceans

    Source: Journal of Applied Meteorology and Climatology:;2011:;volume( 051 ):;issue: 005::page 897
    Author:
    Seo, Eun-Kyoung
    ,
    Biggerstaff, Michael I.
    DOI: 10.1175/JAMC-D-11-055.1
    Publisher: American Meteorological Society
    Abstract: mpirical orthogonal function (EOF) analysis of radiance vectors associated with emission and scattering indices for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) has been performed to examine the regional variability in relations between brightness temperature and rain rate over portions of the tropical oceans known to exhibit regional differences due to different thermodynamic environments and different large-scale forcing. The TMI indices and rain rates used in this study are the products of the Goddard profiling algorithm (GPROF), version 6. The EOF framework reduces the nine-dimensional space of the brightness temperatures and their polarizations to just two dimensions associated with the EOF coefficients. Vertical profiles of reflectivity from the TRMM precipitation radar (PR) are used to show that the statistically obtained EOFs represent bulk physical characteristics of raining clouds. Hence, EOF analysis provides an efficient framework for diagnosing regional differences in cloud structures that affect brightness temperature?rain-rate relations. The EOF framework revealed fundamental differences in the behavior of TMI surface rain-rate retrievals versus retrievals that are based on the PR aboard the TRMM satellite. In EOF space, TMI rain rates were bimodally distributed, with one mode indicating higher rain rates with greater high-density ice and rainwater content in the cloud and the other mode being consistent with moderately heavy warm rain from shallow convection. In contrast, the PR rain-rate distribution showed high rain rates being assigned over a much greater diversity of cloud structures. The manifold of EOF space constructively shows that, of the regions examined here, the tropical northwestern Pacific Ocean region produces the greatest occurrence of particularly strong cumulonimbus clouds.
    • Download: (5.535Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Regional Variability within Global-Scale Relations between Passive Microwave Signatures and Raining Clouds over the Tropical Oceans

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216908
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorSeo, Eun-Kyoung
    contributor authorBiggerstaff, Michael I.
    date accessioned2017-06-09T16:48:59Z
    date available2017-06-09T16:48:59Z
    date copyright2012/05/01
    date issued2011
    identifier issn1558-8424
    identifier otherams-74659.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216908
    description abstractmpirical orthogonal function (EOF) analysis of radiance vectors associated with emission and scattering indices for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) has been performed to examine the regional variability in relations between brightness temperature and rain rate over portions of the tropical oceans known to exhibit regional differences due to different thermodynamic environments and different large-scale forcing. The TMI indices and rain rates used in this study are the products of the Goddard profiling algorithm (GPROF), version 6. The EOF framework reduces the nine-dimensional space of the brightness temperatures and their polarizations to just two dimensions associated with the EOF coefficients. Vertical profiles of reflectivity from the TRMM precipitation radar (PR) are used to show that the statistically obtained EOFs represent bulk physical characteristics of raining clouds. Hence, EOF analysis provides an efficient framework for diagnosing regional differences in cloud structures that affect brightness temperature?rain-rate relations. The EOF framework revealed fundamental differences in the behavior of TMI surface rain-rate retrievals versus retrievals that are based on the PR aboard the TRMM satellite. In EOF space, TMI rain rates were bimodally distributed, with one mode indicating higher rain rates with greater high-density ice and rainwater content in the cloud and the other mode being consistent with moderately heavy warm rain from shallow convection. In contrast, the PR rain-rate distribution showed high rain rates being assigned over a much greater diversity of cloud structures. The manifold of EOF space constructively shows that, of the regions examined here, the tropical northwestern Pacific Ocean region produces the greatest occurrence of particularly strong cumulonimbus clouds.
    publisherAmerican Meteorological Society
    titleRegional Variability within Global-Scale Relations between Passive Microwave Signatures and Raining Clouds over the Tropical Oceans
    typeJournal Paper
    journal volume51
    journal issue5
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-11-055.1
    journal fristpage897
    journal lastpage911
    treeJournal of Applied Meteorology and Climatology:;2011:;volume( 051 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian