YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Influence of Topography and Ambient Stability on the Characteristics of Cold-Air Pools: A Numerical Investigation

    Source: Journal of Applied Meteorology and Climatology:;2012:;volume( 051 ):;issue: 010::page 1740
    Author:
    Katurji, Marwan
    ,
    Zhong, Shiyuan
    DOI: 10.1175/JAMC-D-11-0169.1
    Publisher: American Meteorological Society
    Abstract: high-resolution numerical investigation of a cold-air pooling process (under quiescent conditions) is carried out that systematically highlights the relations between the characteristics of the cold-air pools (e.g., slope winds, vertical temperature and wind structure, and cooling rate) and the characteristics of the topography (e.g., basin size and slope angle) under different ambient stabilities. The Advanced Regional Prediction System model is used to simulate 40 different scenarios at 100-m (10 m) horizontal (vertical) resolution. Results are within the range of similar observed phenomena. The main physical process governing the cooling process near the basin floor (<200 m in height) was found to be longwave radiative flux divergence, whereas vertical advection of temperature dominated the cooling process for the upper-basin areas. The maximum downslope wind speed is linearly correlated with both basin size and slope angle, with stronger wind corresponding to larger basin and lower slope angle. As the basin size increases, the influence of slope angle on maximum downslope wind decreases and the maximum is located farther down the slope. These relationships do not appear to be sensitive to stability, but weaker stability produces more cooling in the basin atmosphere by allowing stronger rising motion and adiabatic cooling. Insight gained from this study helps to improve the understanding of the cold-air pooling process within the investigated settings.
    • Download: (1.565Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Influence of Topography and Ambient Stability on the Characteristics of Cold-Air Pools: A Numerical Investigation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216805
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorKaturji, Marwan
    contributor authorZhong, Shiyuan
    date accessioned2017-06-09T16:48:42Z
    date available2017-06-09T16:48:42Z
    date copyright2012/10/01
    date issued2012
    identifier issn1558-8424
    identifier otherams-74566.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216805
    description abstracthigh-resolution numerical investigation of a cold-air pooling process (under quiescent conditions) is carried out that systematically highlights the relations between the characteristics of the cold-air pools (e.g., slope winds, vertical temperature and wind structure, and cooling rate) and the characteristics of the topography (e.g., basin size and slope angle) under different ambient stabilities. The Advanced Regional Prediction System model is used to simulate 40 different scenarios at 100-m (10 m) horizontal (vertical) resolution. Results are within the range of similar observed phenomena. The main physical process governing the cooling process near the basin floor (<200 m in height) was found to be longwave radiative flux divergence, whereas vertical advection of temperature dominated the cooling process for the upper-basin areas. The maximum downslope wind speed is linearly correlated with both basin size and slope angle, with stronger wind corresponding to larger basin and lower slope angle. As the basin size increases, the influence of slope angle on maximum downslope wind decreases and the maximum is located farther down the slope. These relationships do not appear to be sensitive to stability, but weaker stability produces more cooling in the basin atmosphere by allowing stronger rising motion and adiabatic cooling. Insight gained from this study helps to improve the understanding of the cold-air pooling process within the investigated settings.
    publisherAmerican Meteorological Society
    titleThe Influence of Topography and Ambient Stability on the Characteristics of Cold-Air Pools: A Numerical Investigation
    typeJournal Paper
    journal volume51
    journal issue10
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-11-0169.1
    journal fristpage1740
    journal lastpage1749
    treeJournal of Applied Meteorology and Climatology:;2012:;volume( 051 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian