YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seasonal Variations of the Urban Heat Island at the Surface and the Near-Surface and Reductions due to Urban Vegetation in Mexico City

    Source: Journal of Applied Meteorology and Climatology:;2012:;volume( 051 ):;issue: 005::page 855
    Author:
    Cui, Yu Yan
    ,
    de Foy, Benjamin
    DOI: 10.1175/JAMC-D-11-0104.1
    Publisher: American Meteorological Society
    Abstract: he contrast of vegetation cover in urban and surrounding areas modulates the magnitude of the urban heat island (UHI). This paper examines the seasonal variations of the UHI using the Moderate Resolution Imaging Spectroradiometer (MODIS), surface meteorological observations, and the Weather Research and Forecasting (WRF) model. A distinction is made between the land surface UHI observed by satellite and the near-surface UHI observed by measuring the air temperature. The land surface UHI is found to be high at night throughout the year but drops during the wet season. The daytime UHI is low or even exhibits an urban cool island throughout the year but increases during the wet season. The near-surface air temperature UHI trend is similar to the land surface temperature UHI at night. By day, however, the air temperature UHI remains constant throughout the year. Regression analysis showed that the daytime land surface UHI correlates with the difference in vegetation fraction between the urban and surrounding areas, and, to a lesser extent, with daytime insolation. At night, the UHI correlates with nighttime atmospheric stability and only weakly with differences in vegetation cover and daytime insolation. WRF simulations with the single-layer Urban Canopy Model were initialized with MODIS data, especially for the urban fraction parameter. The simulations correctly represented the distinct seasonal variations of both types of UHIs. The model was used to test the impact of changes in vegetation fraction in the urban area, indicating that increased vegetation would reduce both the land surface UHI and the air temperature UHI at night, as well as the land surface UHI during the daytime.
    • Download: (1.634Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seasonal Variations of the Urban Heat Island at the Surface and the Near-Surface and Reductions due to Urban Vegetation in Mexico City

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216749
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorCui, Yu Yan
    contributor authorde Foy, Benjamin
    date accessioned2017-06-09T16:48:32Z
    date available2017-06-09T16:48:32Z
    date copyright2012/05/01
    date issued2012
    identifier issn1558-8424
    identifier otherams-74515.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216749
    description abstracthe contrast of vegetation cover in urban and surrounding areas modulates the magnitude of the urban heat island (UHI). This paper examines the seasonal variations of the UHI using the Moderate Resolution Imaging Spectroradiometer (MODIS), surface meteorological observations, and the Weather Research and Forecasting (WRF) model. A distinction is made between the land surface UHI observed by satellite and the near-surface UHI observed by measuring the air temperature. The land surface UHI is found to be high at night throughout the year but drops during the wet season. The daytime UHI is low or even exhibits an urban cool island throughout the year but increases during the wet season. The near-surface air temperature UHI trend is similar to the land surface temperature UHI at night. By day, however, the air temperature UHI remains constant throughout the year. Regression analysis showed that the daytime land surface UHI correlates with the difference in vegetation fraction between the urban and surrounding areas, and, to a lesser extent, with daytime insolation. At night, the UHI correlates with nighttime atmospheric stability and only weakly with differences in vegetation cover and daytime insolation. WRF simulations with the single-layer Urban Canopy Model were initialized with MODIS data, especially for the urban fraction parameter. The simulations correctly represented the distinct seasonal variations of both types of UHIs. The model was used to test the impact of changes in vegetation fraction in the urban area, indicating that increased vegetation would reduce both the land surface UHI and the air temperature UHI at night, as well as the land surface UHI during the daytime.
    publisherAmerican Meteorological Society
    titleSeasonal Variations of the Urban Heat Island at the Surface and the Near-Surface and Reductions due to Urban Vegetation in Mexico City
    typeJournal Paper
    journal volume51
    journal issue5
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-11-0104.1
    journal fristpage855
    journal lastpage868
    treeJournal of Applied Meteorology and Climatology:;2012:;volume( 051 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian