YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Robust Numerical Solution of the Stochastic Collection–Breakup Equation for Warm Rain

    Source: Journal of Applied Meteorology and Climatology:;2007:;volume( 046 ):;issue: 009::page 1480
    Author:
    Prat, Olivier P.
    ,
    Barros, Ana P.
    DOI: 10.1175/JAM2544.1
    Publisher: American Meteorological Society
    Abstract: The focus of this paper is on the numerical solution of the stochastic collection equation?stochastic breakup equation (SCE?SBE) describing the evolution of raindrop spectra in warm rain. The drop size distribution (DSD) is discretized using the fixed-pivot scheme proposed by Kumar and Ramkrishna, and new discrete equations for solving collision breakup are presented. The model is evaluated using established coalescence and breakup parameterizations (kernels) available in the literature, and in that regard this paper provides a substantial review of the relevant science. The challenges posed by the need to achieve stable and accurate numerical solutions of the SCE?SBE are examined in detail. In particular, this paper focuses on the impact of varying the shape of the initial DSD on the equilibrium solution of the SCE?SBE for a wide range of rain rates and breakup kernels. The results show that, although there is no dependence of the equilibrium DSD on initial conditions for the same rain rate and breakup kernel, there is large variation in the time that it takes to reach steady state. This result suggests that, in coupled simulations of in-cloud motions and microphysics and for short time scales (<30 min) for which transient conditions prevail, the equilibrium DSD may not be attainable except for very heavy rainfall. Furthermore, simulations for the same initial conditions show a strong dependence of the dynamic evolution of the DSD on the breakup parameterization. The implication of this result is that, before the debate on the uniqueness of the shape of the equilibrium DSD can be settled, there is critical need for fundamental research including laboratory experiments to improve understanding of collisional mechanisms in DSD evolution.
    • Download: (543.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Robust Numerical Solution of the Stochastic Collection–Breakup Equation for Warm Rain

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216701
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorPrat, Olivier P.
    contributor authorBarros, Ana P.
    date accessioned2017-06-09T16:48:21Z
    date available2017-06-09T16:48:21Z
    date copyright2007/09/01
    date issued2007
    identifier issn1558-8424
    identifier otherams-74472.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216701
    description abstractThe focus of this paper is on the numerical solution of the stochastic collection equation?stochastic breakup equation (SCE?SBE) describing the evolution of raindrop spectra in warm rain. The drop size distribution (DSD) is discretized using the fixed-pivot scheme proposed by Kumar and Ramkrishna, and new discrete equations for solving collision breakup are presented. The model is evaluated using established coalescence and breakup parameterizations (kernels) available in the literature, and in that regard this paper provides a substantial review of the relevant science. The challenges posed by the need to achieve stable and accurate numerical solutions of the SCE?SBE are examined in detail. In particular, this paper focuses on the impact of varying the shape of the initial DSD on the equilibrium solution of the SCE?SBE for a wide range of rain rates and breakup kernels. The results show that, although there is no dependence of the equilibrium DSD on initial conditions for the same rain rate and breakup kernel, there is large variation in the time that it takes to reach steady state. This result suggests that, in coupled simulations of in-cloud motions and microphysics and for short time scales (<30 min) for which transient conditions prevail, the equilibrium DSD may not be attainable except for very heavy rainfall. Furthermore, simulations for the same initial conditions show a strong dependence of the dynamic evolution of the DSD on the breakup parameterization. The implication of this result is that, before the debate on the uniqueness of the shape of the equilibrium DSD can be settled, there is critical need for fundamental research including laboratory experiments to improve understanding of collisional mechanisms in DSD evolution.
    publisherAmerican Meteorological Society
    titleA Robust Numerical Solution of the Stochastic Collection–Breakup Equation for Warm Rain
    typeJournal Paper
    journal volume46
    journal issue9
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAM2544.1
    journal fristpage1480
    journal lastpage1497
    treeJournal of Applied Meteorology and Climatology:;2007:;volume( 046 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian