YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm−1

    Source: Journal of Applied Meteorology and Climatology:;2007:;volume( 046 ):;issue: 004::page 423
    Author:
    Baum, Bryan A.
    ,
    Yang, Ping
    ,
    Nasiri, Shaima
    ,
    Heidinger, Andrew K.
    ,
    Heymsfield, Andrew
    ,
    Li, Jun
    DOI: 10.1175/JAM2473.1
    Publisher: American Meteorological Society
    Abstract: This study reports on the development of bulk single-scattering models for ice clouds that are appropriate for use in hyperspectral radiative transfer cloud modeling over the spectral range from 100 to 3250 cm?1. The models are developed in a manner similar to that recently reported for the Moderate-Resolution Imaging Spectroradiometer (MODIS); therefore these models result in a consistent set of scattering properties from visible to far-infrared wavelengths. The models incorporate a new database of individual ice-particle scattering properties that includes droxtals, 3D bullet rosettes, hexagonal solid and hollow columns, aggregates, and plates. The database provides single-scattering properties for each habit in 45 size bins ranging from 2 to 9500 ?m, and for 49 wavenumbers between 100 and 3250 cm?1, which is further interpolated to 3151 discrete wavenumbers on the basis of a third-order spline interpolation method. Bulk models are developed by integrating various properties over both particle habit and size distributions. Individual bulk models are developed for 18 effective diameters Deff, ranging from Deff = 10 ?m to Deff = 180 ?m. A total of 1117 particle size distributions are used in the analyses and are taken from analysis of the First International Satellite Cloud Climatology Project Regional Experiment (FIRE)-I, FIRE-II, Atmospheric Radiation Measurement Program intensive operation period (ARM-IOP), Tropical Rainfall Measuring Mission Kwajalein Experiment (TRMM-KWAJEX), and Cirrus Regional Study of Tropical Anvils and Cirrus Layers Florida-Area Cirrus Experiment (CRYSTAL-FACE) data. The models include microphysical and scattering properties such as median mass diameter, effective diameter, single-scattering albedo, asymmetry factor, and scattering phase function. The spectral models are appropriate for applications involving the interpretation of the radiometric measurements of ice clouds acquired by infrared spectrometers such as the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite and the Cross-Track Infrared Sounder (CrIS) on the upcoming National Polar-Orbiting Environmental Satellite System (NPOESS) platforms.
    • Download: (1.151Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm−1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216621
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorBaum, Bryan A.
    contributor authorYang, Ping
    contributor authorNasiri, Shaima
    contributor authorHeidinger, Andrew K.
    contributor authorHeymsfield, Andrew
    contributor authorLi, Jun
    date accessioned2017-06-09T16:48:09Z
    date available2017-06-09T16:48:09Z
    date copyright2007/04/01
    date issued2007
    identifier issn1558-8424
    identifier otherams-74401.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216621
    description abstractThis study reports on the development of bulk single-scattering models for ice clouds that are appropriate for use in hyperspectral radiative transfer cloud modeling over the spectral range from 100 to 3250 cm?1. The models are developed in a manner similar to that recently reported for the Moderate-Resolution Imaging Spectroradiometer (MODIS); therefore these models result in a consistent set of scattering properties from visible to far-infrared wavelengths. The models incorporate a new database of individual ice-particle scattering properties that includes droxtals, 3D bullet rosettes, hexagonal solid and hollow columns, aggregates, and plates. The database provides single-scattering properties for each habit in 45 size bins ranging from 2 to 9500 ?m, and for 49 wavenumbers between 100 and 3250 cm?1, which is further interpolated to 3151 discrete wavenumbers on the basis of a third-order spline interpolation method. Bulk models are developed by integrating various properties over both particle habit and size distributions. Individual bulk models are developed for 18 effective diameters Deff, ranging from Deff = 10 ?m to Deff = 180 ?m. A total of 1117 particle size distributions are used in the analyses and are taken from analysis of the First International Satellite Cloud Climatology Project Regional Experiment (FIRE)-I, FIRE-II, Atmospheric Radiation Measurement Program intensive operation period (ARM-IOP), Tropical Rainfall Measuring Mission Kwajalein Experiment (TRMM-KWAJEX), and Cirrus Regional Study of Tropical Anvils and Cirrus Layers Florida-Area Cirrus Experiment (CRYSTAL-FACE) data. The models include microphysical and scattering properties such as median mass diameter, effective diameter, single-scattering albedo, asymmetry factor, and scattering phase function. The spectral models are appropriate for applications involving the interpretation of the radiometric measurements of ice clouds acquired by infrared spectrometers such as the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite and the Cross-Track Infrared Sounder (CrIS) on the upcoming National Polar-Orbiting Environmental Satellite System (NPOESS) platforms.
    publisherAmerican Meteorological Society
    titleBulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm−1
    typeJournal Paper
    journal volume46
    journal issue4
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAM2473.1
    journal fristpage423
    journal lastpage434
    treeJournal of Applied Meteorology and Climatology:;2007:;volume( 046 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian