YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameterization of Convective Transport in a Lagrangian Particle Dispersion Model and Its Evaluation

    Source: Journal of Applied Meteorology and Climatology:;2007:;volume( 046 ):;issue: 004::page 403
    Author:
    Forster, Caroline
    ,
    Stohl, Andreas
    ,
    Seibert, Petra
    DOI: 10.1175/JAM2470.1
    Publisher: American Meteorological Society
    Abstract: This paper presents the revision and evaluation of the interface between the convective parameterization by Emanuel and ?ivkovi?-Rothman and the Lagrangian particle dispersion model ?FLEXPART? based on meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The convection scheme relies on the ECMWF grid-scale temperature and humidity and provides a matrix necessary for the vertical convective particle displacement. The benefits of the revised interface relative to its previous version are presented. It is shown that, apart from minor fluctuations caused by the stochastic convective redistribution of the particles, the well-mixed criterion is fulfilled in simulations that include convection. Although for technical reasons the calculation of the displacement matrix differs somewhat between the forward and the backward simulations in time, the mean relative difference between the convective mass fluxes in forward and backward simulations is below 3% and can therefore be tolerated. A comparison of the convective mass fluxes and precipitation rates with those archived in the 40-yr ECMWF Reanalysis (ERA-40) data reveals that the convection scheme in FLEXPART produces upward mass fluxes and precipitation rates that are generally smaller by about 25% than those from ERA-40. This result is interpreted as positive, because precipitation is known to be overestimated by the ECMWF model. Tracer transport simulations with and without convection are compared with surface and aircraft measurements from two tracer experiments and to 222Rn measurements from two aircraft campaigns. At the surface no substantial differences between the model runs with and without convection are found, but at higher altitudes the model runs with convection produced better agreement with the measurements in most of the cases and indifferent results in the others. However, for the tracer experiments only few measurements at higher altitudes are available, and for the aircraft campaigns the 222Rn emissions are highly uncertain. Other datasets better suitable for the validation of convective transport in models are not available. Thus, there is a clear need for reliable datasets suitable to validate vertical transport in models.
    • Download: (673.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameterization of Convective Transport in a Lagrangian Particle Dispersion Model and Its Evaluation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216618
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorForster, Caroline
    contributor authorStohl, Andreas
    contributor authorSeibert, Petra
    date accessioned2017-06-09T16:48:09Z
    date available2017-06-09T16:48:09Z
    date copyright2007/04/01
    date issued2007
    identifier issn1558-8424
    identifier otherams-74398.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216618
    description abstractThis paper presents the revision and evaluation of the interface between the convective parameterization by Emanuel and ?ivkovi?-Rothman and the Lagrangian particle dispersion model ?FLEXPART? based on meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The convection scheme relies on the ECMWF grid-scale temperature and humidity and provides a matrix necessary for the vertical convective particle displacement. The benefits of the revised interface relative to its previous version are presented. It is shown that, apart from minor fluctuations caused by the stochastic convective redistribution of the particles, the well-mixed criterion is fulfilled in simulations that include convection. Although for technical reasons the calculation of the displacement matrix differs somewhat between the forward and the backward simulations in time, the mean relative difference between the convective mass fluxes in forward and backward simulations is below 3% and can therefore be tolerated. A comparison of the convective mass fluxes and precipitation rates with those archived in the 40-yr ECMWF Reanalysis (ERA-40) data reveals that the convection scheme in FLEXPART produces upward mass fluxes and precipitation rates that are generally smaller by about 25% than those from ERA-40. This result is interpreted as positive, because precipitation is known to be overestimated by the ECMWF model. Tracer transport simulations with and without convection are compared with surface and aircraft measurements from two tracer experiments and to 222Rn measurements from two aircraft campaigns. At the surface no substantial differences between the model runs with and without convection are found, but at higher altitudes the model runs with convection produced better agreement with the measurements in most of the cases and indifferent results in the others. However, for the tracer experiments only few measurements at higher altitudes are available, and for the aircraft campaigns the 222Rn emissions are highly uncertain. Other datasets better suitable for the validation of convective transport in models are not available. Thus, there is a clear need for reliable datasets suitable to validate vertical transport in models.
    publisherAmerican Meteorological Society
    titleParameterization of Convective Transport in a Lagrangian Particle Dispersion Model and Its Evaluation
    typeJournal Paper
    journal volume46
    journal issue4
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAM2470.1
    journal fristpage403
    journal lastpage422
    treeJournal of Applied Meteorology and Climatology:;2007:;volume( 046 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian