YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Airborne Retrievals of Snow Microwave Emissivity at AMSU Frequencies Using ARTS/SCEM-UA

    Source: Journal of Applied Meteorology and Climatology:;2007:;volume( 046 ):;issue: 001::page 23
    Author:
    Harlow, R. Chawn
    DOI: 10.1175/JAM2440.1
    Publisher: American Meteorological Society
    Abstract: The remote sounding, by satellite, of atmospheric temperature and humidity is an important source of data for assimilation into operational weather forecasting routines. For retrievals of these variables near the surface, wavebands with low optical depths are monitored to allow penetration through the overlying atmosphere. Brightness temperatures in these relatively transparent bands are also sensitive to the land surface emissivity and effective temperature. Inadequate understanding of these land surface emissivities is a major issue when assimilating Advanced Microwave Sounding Unit data for the land-covered portion of the globe. One approach for estimating the emissivity of snow-covered surfaces is an empirical model derived from satellite-based and land-based retrievals of emissivity for a variety of snow types. The Met Office?s Hercules C-130 aircraft flew over snow-covered Arctic terrain of northern Finland during the Polar Experiment (POLEX) of March 2001. On these flights, microwave radiometers provided microwave brightness temperatures at 23.8, 50.3, 89.0, 157, and 183 GHz. The work presented here uses these data along with a robust multiparameter optimization routine [Shuffled Complex Evolution Metropolis (SCEM-UA)] coupled to the Atmospheric Radiative Transfer Simulator (ARTS) to retrieve emissivities at the measured frequencies. These results are then used to validate an empirical model. This latter model predicts 23.8?157-GHz emissivities with an RMSE of less than 0.02 and bias of less than 0.01 when compared with data at an incidence angle of 40°. Nonmonotonic behavior in the emissivity spectrum for this campaign, reported in earlier work, is confirmed by the retrievals presented here.
    • Download: (872.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Airborne Retrievals of Snow Microwave Emissivity at AMSU Frequencies Using ARTS/SCEM-UA

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216590
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorHarlow, R. Chawn
    date accessioned2017-06-09T16:48:05Z
    date available2017-06-09T16:48:05Z
    date copyright2007/01/01
    date issued2007
    identifier issn1558-8424
    identifier otherams-74372.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216590
    description abstractThe remote sounding, by satellite, of atmospheric temperature and humidity is an important source of data for assimilation into operational weather forecasting routines. For retrievals of these variables near the surface, wavebands with low optical depths are monitored to allow penetration through the overlying atmosphere. Brightness temperatures in these relatively transparent bands are also sensitive to the land surface emissivity and effective temperature. Inadequate understanding of these land surface emissivities is a major issue when assimilating Advanced Microwave Sounding Unit data for the land-covered portion of the globe. One approach for estimating the emissivity of snow-covered surfaces is an empirical model derived from satellite-based and land-based retrievals of emissivity for a variety of snow types. The Met Office?s Hercules C-130 aircraft flew over snow-covered Arctic terrain of northern Finland during the Polar Experiment (POLEX) of March 2001. On these flights, microwave radiometers provided microwave brightness temperatures at 23.8, 50.3, 89.0, 157, and 183 GHz. The work presented here uses these data along with a robust multiparameter optimization routine [Shuffled Complex Evolution Metropolis (SCEM-UA)] coupled to the Atmospheric Radiative Transfer Simulator (ARTS) to retrieve emissivities at the measured frequencies. These results are then used to validate an empirical model. This latter model predicts 23.8?157-GHz emissivities with an RMSE of less than 0.02 and bias of less than 0.01 when compared with data at an incidence angle of 40°. Nonmonotonic behavior in the emissivity spectrum for this campaign, reported in earlier work, is confirmed by the retrievals presented here.
    publisherAmerican Meteorological Society
    titleAirborne Retrievals of Snow Microwave Emissivity at AMSU Frequencies Using ARTS/SCEM-UA
    typeJournal Paper
    journal volume46
    journal issue1
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAM2440.1
    journal fristpage23
    journal lastpage35
    treeJournal of Applied Meteorology and Climatology:;2007:;volume( 046 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian