YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameterization of the Urban Energy Budget with the Submesoscale Soil Model

    Source: Journal of Applied Meteorology and Climatology:;2006:;volume( 045 ):;issue: 012::page 1744
    Author:
    Dupont, Sylvain
    ,
    Mestayer, Patrice G.
    DOI: 10.1175/JAM2417.1
    Publisher: American Meteorological Society
    Abstract: The thermal component of the Soil Model for Submesoscales, Urbanized Version (SM2-U), is described. SM2-U is an extension on a physical basis of the rural Interactions between Soil, Biosphere, and Atmosphere (ISBA) soil model to urban areas. It evaluates the turbulent energy, moisture, and radiative fluxes at the urban canopy?atmosphere interface to provide lower boundary conditions of high-resolution mesoscale models. Unlike previous urban canopy schemes, SM2-U integrates in a simple way the physical processes inside the urban canopy: the building wall influence is integrated in the pavement temperature equation, allowing the model to compute directly the energy budget of street canyons. The SM2-U model is evaluated on the Marseille, France, city-center energy-budget components measured during the field experiments to constrain models of atmospheric pollution and transport of emissions [Expérience sur Site pour Contraindre les Modèles de Pollution Atmosphérique et de Transport d?Emissions (ESCOMPTE)] urban boundary layer (UBL) campaign (June?July 2001). The observed behavior of net radiation and heat fluxes is reproduced by SM2-U with a high level of quality, demonstrating that the influence of building walls may be well modeled by modifying the pavement temperature equation. A sensitivity analysis shows that the accurate account of wall area and the parameterization of both the fast response of artificial materials to environmental forcing variations and their heat storage capacity are essential for mesoscale simulations of the urban boundary layer; they are probably more important than accurate but complex computation of radiative trapping (effective albedo and emissivity)
    • Download: (1.574Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameterization of the Urban Energy Budget with the Submesoscale Soil Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216565
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorDupont, Sylvain
    contributor authorMestayer, Patrice G.
    date accessioned2017-06-09T16:48:01Z
    date available2017-06-09T16:48:01Z
    date copyright2006/12/01
    date issued2006
    identifier issn1558-8424
    identifier otherams-74350.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216565
    description abstractThe thermal component of the Soil Model for Submesoscales, Urbanized Version (SM2-U), is described. SM2-U is an extension on a physical basis of the rural Interactions between Soil, Biosphere, and Atmosphere (ISBA) soil model to urban areas. It evaluates the turbulent energy, moisture, and radiative fluxes at the urban canopy?atmosphere interface to provide lower boundary conditions of high-resolution mesoscale models. Unlike previous urban canopy schemes, SM2-U integrates in a simple way the physical processes inside the urban canopy: the building wall influence is integrated in the pavement temperature equation, allowing the model to compute directly the energy budget of street canyons. The SM2-U model is evaluated on the Marseille, France, city-center energy-budget components measured during the field experiments to constrain models of atmospheric pollution and transport of emissions [Expérience sur Site pour Contraindre les Modèles de Pollution Atmosphérique et de Transport d?Emissions (ESCOMPTE)] urban boundary layer (UBL) campaign (June?July 2001). The observed behavior of net radiation and heat fluxes is reproduced by SM2-U with a high level of quality, demonstrating that the influence of building walls may be well modeled by modifying the pavement temperature equation. A sensitivity analysis shows that the accurate account of wall area and the parameterization of both the fast response of artificial materials to environmental forcing variations and their heat storage capacity are essential for mesoscale simulations of the urban boundary layer; they are probably more important than accurate but complex computation of radiative trapping (effective albedo and emissivity)
    publisherAmerican Meteorological Society
    titleParameterization of the Urban Energy Budget with the Submesoscale Soil Model
    typeJournal Paper
    journal volume45
    journal issue12
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAM2417.1
    journal fristpage1744
    journal lastpage1765
    treeJournal of Applied Meteorology and Climatology:;2006:;volume( 045 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian