YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    “Big Data Assimilation” Revolutionizing Severe Weather Prediction

    Source: Bulletin of the American Meteorological Society:;2016:;volume( 097 ):;issue: 008::page 1347
    Author:
    Miyoshi, Takemasa
    ,
    Kunii, Masaru
    ,
    Ruiz, Juan
    ,
    Lien, Guo-Yuan
    ,
    Satoh, Shinsuke
    ,
    Ushio, Tomoo
    ,
    Bessho, Kotaro
    ,
    Seko, Hiromu
    ,
    Tomita, Hirofumi
    ,
    Ishikawa, Yutaka
    DOI: 10.1175/BAMS-D-15-00144.1
    Publisher: American Meteorological Society
    Abstract: udden local severe weather is a threat, and we explore what the highest-end supercomputing and sensing technologies can do to address this challenge. Here we show that using the Japanese flagship ?K? supercomputer, we can synergistically integrate ?big simulations? of 100 parallel simulations of a convective weather system at 100-m grid spacing and ?big data? from the next-generation phased array weather radar that produces a high-resolution 3-dimensional rain distribution every 30 s?two orders of magnitude more data than the currently used parabolic-antenna radar. This ?big data assimilation? system refreshes 30-min forecasts every 30 s, 120 times more rapidly than the typical hourly updated systems operated at the world?s weather prediction centers. A real high-impact weather case study shows encouraging results of the 30-s-update big data assimilation system.
    • Download: (2.631Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      “Big Data Assimilation” Revolutionizing Severe Weather Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4215883
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorMiyoshi, Takemasa
    contributor authorKunii, Masaru
    contributor authorRuiz, Juan
    contributor authorLien, Guo-Yuan
    contributor authorSatoh, Shinsuke
    contributor authorUshio, Tomoo
    contributor authorBessho, Kotaro
    contributor authorSeko, Hiromu
    contributor authorTomita, Hirofumi
    contributor authorIshikawa, Yutaka
    date accessioned2017-06-09T16:46:04Z
    date available2017-06-09T16:46:04Z
    date copyright2016/08/01
    date issued2016
    identifier issn0003-0007
    identifier otherams-73736.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4215883
    description abstractudden local severe weather is a threat, and we explore what the highest-end supercomputing and sensing technologies can do to address this challenge. Here we show that using the Japanese flagship ?K? supercomputer, we can synergistically integrate ?big simulations? of 100 parallel simulations of a convective weather system at 100-m grid spacing and ?big data? from the next-generation phased array weather radar that produces a high-resolution 3-dimensional rain distribution every 30 s?two orders of magnitude more data than the currently used parabolic-antenna radar. This ?big data assimilation? system refreshes 30-min forecasts every 30 s, 120 times more rapidly than the typical hourly updated systems operated at the world?s weather prediction centers. A real high-impact weather case study shows encouraging results of the 30-s-update big data assimilation system.
    publisherAmerican Meteorological Society
    title“Big Data Assimilation” Revolutionizing Severe Weather Prediction
    typeJournal Paper
    journal volume97
    journal issue8
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/BAMS-D-15-00144.1
    journal fristpage1347
    journal lastpage1354
    treeBulletin of the American Meteorological Society:;2016:;volume( 097 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian