Show simple item record

contributor authorMiyoshi, Takemasa
contributor authorKunii, Masaru
contributor authorRuiz, Juan
contributor authorLien, Guo-Yuan
contributor authorSatoh, Shinsuke
contributor authorUshio, Tomoo
contributor authorBessho, Kotaro
contributor authorSeko, Hiromu
contributor authorTomita, Hirofumi
contributor authorIshikawa, Yutaka
date accessioned2017-06-09T16:46:04Z
date available2017-06-09T16:46:04Z
date copyright2016/08/01
date issued2016
identifier issn0003-0007
identifier otherams-73736.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4215883
description abstractudden local severe weather is a threat, and we explore what the highest-end supercomputing and sensing technologies can do to address this challenge. Here we show that using the Japanese flagship ?K? supercomputer, we can synergistically integrate ?big simulations? of 100 parallel simulations of a convective weather system at 100-m grid spacing and ?big data? from the next-generation phased array weather radar that produces a high-resolution 3-dimensional rain distribution every 30 s?two orders of magnitude more data than the currently used parabolic-antenna radar. This ?big data assimilation? system refreshes 30-min forecasts every 30 s, 120 times more rapidly than the typical hourly updated systems operated at the world?s weather prediction centers. A real high-impact weather case study shows encouraging results of the 30-s-update big data assimilation system.
publisherAmerican Meteorological Society
title“Big Data Assimilation” Revolutionizing Severe Weather Prediction
typeJournal Paper
journal volume97
journal issue8
journal titleBulletin of the American Meteorological Society
identifier doi10.1175/BAMS-D-15-00144.1
journal fristpage1347
journal lastpage1354
treeBulletin of the American Meteorological Society:;2016:;volume( 097 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record