Challenges in Quantifying Changes in the Global Water CycleSource: Bulletin of the American Meteorological Society:;2014:;volume( 096 ):;issue: 007::page 1097Author:Hegerl, Gabriele C.
,
Black, Emily
,
Allan, Richard P.
,
Ingram, William J.
,
Polson, Debbie
,
Trenberth, Kevin E.
,
Chadwick, Robin S.
,
Arkin, Phillip A.
,
Sarojini, Beena Balan
,
Becker, Andreas
,
Dai, Aiguo
,
Durack, Paul J.
,
Easterling, David
,
Fowler, Hayley J.
,
Kendon, Elizabeth J.
,
Huffman, George J.
,
Liu, Chunlei
,
Marsh, Robert
,
New, Mark
,
Osborn, Timothy J.
,
Skliris, Nikolaos
,
Stott, Peter A.
,
Vidale, Pier-Luigi
,
Wijffels, Susan E.
,
Wilcox, Laura J.
,
Willett, Kate M.
,
Zhang, Xuebin
DOI: 10.1175/BAMS-D-13-00212.1Publisher: American Meteorological Society
Abstract: nderstanding observed changes to the global water cycle is key to predicting future climate changes and their impacts. While many datasets document crucial variables such as precipitation, ocean salinity, runoff, and humidity, most are uncertain for determining long-term changes. In situ networks provide long time series over land, but are sparse in many regions, particularly the tropics. Satellite and reanalysis datasets provide global coverage, but their long-term stability is lacking. However, comparisons of changes among related variables can give insights into the robustness of observed changes. For example, ocean salinity, interpreted with an understanding of ocean processes, can help cross-validate precipitation. Observational evidence for human influences on the water cycle is emerging, but uncertainties resulting from internal variability and observational errors are too large to determine whether the observed and simulated changes are consistent. Improvements to the in situ and satellite observing networks that monitor the changing water cycle are required, yet continued data coverage is threatened by funding reductions. Uncertainty both in the role of anthropogenic aerosols and because of the large climate variability presently limits confidence in attribution of observed changes.
|
Collections
Show full item record
contributor author | Hegerl, Gabriele C. | |
contributor author | Black, Emily | |
contributor author | Allan, Richard P. | |
contributor author | Ingram, William J. | |
contributor author | Polson, Debbie | |
contributor author | Trenberth, Kevin E. | |
contributor author | Chadwick, Robin S. | |
contributor author | Arkin, Phillip A. | |
contributor author | Sarojini, Beena Balan | |
contributor author | Becker, Andreas | |
contributor author | Dai, Aiguo | |
contributor author | Durack, Paul J. | |
contributor author | Easterling, David | |
contributor author | Fowler, Hayley J. | |
contributor author | Kendon, Elizabeth J. | |
contributor author | Huffman, George J. | |
contributor author | Liu, Chunlei | |
contributor author | Marsh, Robert | |
contributor author | New, Mark | |
contributor author | Osborn, Timothy J. | |
contributor author | Skliris, Nikolaos | |
contributor author | Stott, Peter A. | |
contributor author | Vidale, Pier-Luigi | |
contributor author | Wijffels, Susan E. | |
contributor author | Wilcox, Laura J. | |
contributor author | Willett, Kate M. | |
contributor author | Zhang, Xuebin | |
date accessioned | 2017-06-09T16:45:12Z | |
date available | 2017-06-09T16:45:12Z | |
date copyright | 2015/07/01 | |
date issued | 2014 | |
identifier issn | 0003-0007 | |
identifier other | ams-73489.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4215608 | |
description abstract | nderstanding observed changes to the global water cycle is key to predicting future climate changes and their impacts. While many datasets document crucial variables such as precipitation, ocean salinity, runoff, and humidity, most are uncertain for determining long-term changes. In situ networks provide long time series over land, but are sparse in many regions, particularly the tropics. Satellite and reanalysis datasets provide global coverage, but their long-term stability is lacking. However, comparisons of changes among related variables can give insights into the robustness of observed changes. For example, ocean salinity, interpreted with an understanding of ocean processes, can help cross-validate precipitation. Observational evidence for human influences on the water cycle is emerging, but uncertainties resulting from internal variability and observational errors are too large to determine whether the observed and simulated changes are consistent. Improvements to the in situ and satellite observing networks that monitor the changing water cycle are required, yet continued data coverage is threatened by funding reductions. Uncertainty both in the role of anthropogenic aerosols and because of the large climate variability presently limits confidence in attribution of observed changes. | |
publisher | American Meteorological Society | |
title | Challenges in Quantifying Changes in the Global Water Cycle | |
type | Journal Paper | |
journal volume | 96 | |
journal issue | 7 | |
journal title | Bulletin of the American Meteorological Society | |
identifier doi | 10.1175/BAMS-D-13-00212.1 | |
journal fristpage | 1097 | |
journal lastpage | 1115 | |
tree | Bulletin of the American Meteorological Society:;2014:;volume( 096 ):;issue: 007 | |
contenttype | Fulltext |