YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seasonal Prediction of Air Temperature Associated with the Growing-Season Start of Warm-Season Crops across Canada

    Source: Journal of Applied Meteorology and Climatology:;2011:;volume( 050 ):;issue: 008::page 1637
    Author:
    Wu, Zhiwei
    ,
    Lin, Hai
    ,
    O’Brien, Ted
    DOI: 10.1175/2011JAMC2676.1
    Publisher: American Meteorological Society
    Abstract: easonal prediction of growing-season start of warm-season crops (GSSWC) is an important task for the agriculture sector to identify risks and opportunities in advance. On the basis of observational daily surface air temperature at 210 stations across Canada, this study found that the GSSWC in most Canadian areas begins during May?June and exhibits significant year-to-year variations that are dominated by two distinct leading empirical orthogonal function modes. The first mode accounts for 20.2% of the total GSSWC variances and features a monosign pattern with the maximum anomalies in central-southern Canada. It indicates that warm-season crops in most Canadian areas usually experience a consistent early or late growing-season start and those in central-southern Canada have the most pronounced interannual variations. The second mode explains 10.8% of the total variances and bears a zonal seesaw pattern in general, accompanied by prominent anomalies covering the west coast of Canada and anomalies with a reverse sign prevailing in central-eastern Canada. Therefore, a strong second-mode year represents an early GSSWC in western Canada and a late GSSWC in the rest of the regions. The predictability sources for the two distinct leading modes show considerable differences. The first mode is closely linked with the North American continental-scale snow cover anomalies and sea surface temperature anomalies (SSTAs) in the North Pacific and Indian Oceans in the prior April. For the second mode, the preceding April snow cover anomalies over western North America and SSTAs in the equatorial-eastern Pacific, North Pacific, and equatorial Indian Oceans provide precursory conditions. These snow cover anomalies and SSTAs sustain from April through May?June, influence the large-scale atmospheric circulation anomalies during the crops? growing-start season, and contribute to the occurrence of the two leading modes of the GSSWC across Canada. On the basis of these predictors of snow cover anomalies and SSTAs in the prior April, an empirical model is established for predicting the two principal components (PCs) of the GSSWC across Canada. Hindcasting is performed for the 1972?2007 period with a leaving-nine-out cross-validation strategy and shows a statistically significant prediction skill. The correlation coefficient between the observation and the hindcast is 0.54 for PC1 and 0.48 for PC2, both exceeding the 95% confidence level. Because all of these predictors can be readily monitored in real time, this empirical model provides a new prediction tool for agrometeorological events across Canada.
    • Download: (4.009Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seasonal Prediction of Air Temperature Associated with the Growing-Season Start of Warm-Season Crops across Canada

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213586
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorWu, Zhiwei
    contributor authorLin, Hai
    contributor authorO’Brien, Ted
    date accessioned2017-06-09T16:39:22Z
    date available2017-06-09T16:39:22Z
    date copyright2011/08/01
    date issued2011
    identifier issn1558-8424
    identifier otherams-71669.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213586
    description abstracteasonal prediction of growing-season start of warm-season crops (GSSWC) is an important task for the agriculture sector to identify risks and opportunities in advance. On the basis of observational daily surface air temperature at 210 stations across Canada, this study found that the GSSWC in most Canadian areas begins during May?June and exhibits significant year-to-year variations that are dominated by two distinct leading empirical orthogonal function modes. The first mode accounts for 20.2% of the total GSSWC variances and features a monosign pattern with the maximum anomalies in central-southern Canada. It indicates that warm-season crops in most Canadian areas usually experience a consistent early or late growing-season start and those in central-southern Canada have the most pronounced interannual variations. The second mode explains 10.8% of the total variances and bears a zonal seesaw pattern in general, accompanied by prominent anomalies covering the west coast of Canada and anomalies with a reverse sign prevailing in central-eastern Canada. Therefore, a strong second-mode year represents an early GSSWC in western Canada and a late GSSWC in the rest of the regions. The predictability sources for the two distinct leading modes show considerable differences. The first mode is closely linked with the North American continental-scale snow cover anomalies and sea surface temperature anomalies (SSTAs) in the North Pacific and Indian Oceans in the prior April. For the second mode, the preceding April snow cover anomalies over western North America and SSTAs in the equatorial-eastern Pacific, North Pacific, and equatorial Indian Oceans provide precursory conditions. These snow cover anomalies and SSTAs sustain from April through May?June, influence the large-scale atmospheric circulation anomalies during the crops? growing-start season, and contribute to the occurrence of the two leading modes of the GSSWC across Canada. On the basis of these predictors of snow cover anomalies and SSTAs in the prior April, an empirical model is established for predicting the two principal components (PCs) of the GSSWC across Canada. Hindcasting is performed for the 1972?2007 period with a leaving-nine-out cross-validation strategy and shows a statistically significant prediction skill. The correlation coefficient between the observation and the hindcast is 0.54 for PC1 and 0.48 for PC2, both exceeding the 95% confidence level. Because all of these predictors can be readily monitored in real time, this empirical model provides a new prediction tool for agrometeorological events across Canada.
    publisherAmerican Meteorological Society
    titleSeasonal Prediction of Air Temperature Associated with the Growing-Season Start of Warm-Season Crops across Canada
    typeJournal Paper
    journal volume50
    journal issue8
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2011JAMC2676.1
    journal fristpage1637
    journal lastpage1649
    treeJournal of Applied Meteorology and Climatology:;2011:;volume( 050 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian