YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamical Downscaling of Wind Speed in Complex Terrain Prone To Bora-Type Flows

    Source: Journal of Applied Meteorology and Climatology:;2011:;volume( 050 ):;issue: 008::page 1676
    Author:
    Horvath, Kristian
    ,
    Bajić, Alica
    ,
    Ivatek-Šahdan, Stjepan
    DOI: 10.1175/2011JAMC2638.1
    Publisher: American Meteorological Society
    Abstract: he results of numerically modeled wind speed climate, a primary component of wind energy resource assessment in the complex terrain of Croatia, are given. For that purpose, dynamical downscaling of 10 yr (1992?2001) of the 40-yr ECMWF Re-Analysis (ERA-40) was performed to 8-km horizontal grid spacing with the use of a spectral, prognostic full-physics model Aire Limitée Adaptation Dynamique Développement International (ALADIN; the ?ALHR? version). Then modeled data with a 60-min frequency were refined to 2-km horizontal grid spacing with a simplified and cost-effective model version, the so-called dynamical adaptation (DADA). The statistical verification of ERA-40-, ALHR-, and DADA-modeled wind speed on the basis of data from measurement stations representing different regions of Croatia suggests that downscaling was successful and that model accuracy generally improves as horizontal resolution is increased. The areas of the highest mean wind speeds correspond well to locations of frequent and strong bora flow as well as to the prominent mountain peaks. The best results are achieved with DADA and contain bias of 1% of the mean wind speed for eastern Croatia while reaching 10% for complex coastal terrain, mainly because of underestimation of the strongest winds. Root-mean-square errors for DADA are significantly smaller for flat terrain than for complex terrain, with relative values close to 12% of the mean wind speed regardless of the station location. Spectral analyses suggest that the shape of the kinetic energy spectra generally relaxes from k?3 at the upper troposphere to the shape of orographic spectra near the surface and shows no seasonal variability. Apart from the buildup of energy on smaller scales of motions, it is shown that mesoscale simulations contain a considerable amount of energy related to near-surface and mostly divergent meso-?-scale (20?200 km) motions. Spectral decomposition of measured and modeled data in temporal space indicates a reasonable performance of all model datasets in simulating the primary maximum of spectral power related to synoptic and larger-than-diurnal mesoscale motions, with somewhat increased accuracy of mesoscale model data. The primary improvement of dynamical adaptation was achieved for cross-mountain winds, whereas mixed results were found for along-mountain wind directions. Secondary diurnal and tertiary semidiurnal maxima are significantly better simulated with the mesoscale model for coastal stations but are somewhat more erroneous for the continental station. The mesoscale model data underestimate the spectral power of motions with less-than-semidiurnal periods.
    • Download: (2.133Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamical Downscaling of Wind Speed in Complex Terrain Prone To Bora-Type Flows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213563
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorHorvath, Kristian
    contributor authorBajić, Alica
    contributor authorIvatek-Šahdan, Stjepan
    date accessioned2017-06-09T16:39:17Z
    date available2017-06-09T16:39:17Z
    date copyright2011/08/01
    date issued2011
    identifier issn1558-8424
    identifier otherams-71648.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213563
    description abstracthe results of numerically modeled wind speed climate, a primary component of wind energy resource assessment in the complex terrain of Croatia, are given. For that purpose, dynamical downscaling of 10 yr (1992?2001) of the 40-yr ECMWF Re-Analysis (ERA-40) was performed to 8-km horizontal grid spacing with the use of a spectral, prognostic full-physics model Aire Limitée Adaptation Dynamique Développement International (ALADIN; the ?ALHR? version). Then modeled data with a 60-min frequency were refined to 2-km horizontal grid spacing with a simplified and cost-effective model version, the so-called dynamical adaptation (DADA). The statistical verification of ERA-40-, ALHR-, and DADA-modeled wind speed on the basis of data from measurement stations representing different regions of Croatia suggests that downscaling was successful and that model accuracy generally improves as horizontal resolution is increased. The areas of the highest mean wind speeds correspond well to locations of frequent and strong bora flow as well as to the prominent mountain peaks. The best results are achieved with DADA and contain bias of 1% of the mean wind speed for eastern Croatia while reaching 10% for complex coastal terrain, mainly because of underestimation of the strongest winds. Root-mean-square errors for DADA are significantly smaller for flat terrain than for complex terrain, with relative values close to 12% of the mean wind speed regardless of the station location. Spectral analyses suggest that the shape of the kinetic energy spectra generally relaxes from k?3 at the upper troposphere to the shape of orographic spectra near the surface and shows no seasonal variability. Apart from the buildup of energy on smaller scales of motions, it is shown that mesoscale simulations contain a considerable amount of energy related to near-surface and mostly divergent meso-?-scale (20?200 km) motions. Spectral decomposition of measured and modeled data in temporal space indicates a reasonable performance of all model datasets in simulating the primary maximum of spectral power related to synoptic and larger-than-diurnal mesoscale motions, with somewhat increased accuracy of mesoscale model data. The primary improvement of dynamical adaptation was achieved for cross-mountain winds, whereas mixed results were found for along-mountain wind directions. Secondary diurnal and tertiary semidiurnal maxima are significantly better simulated with the mesoscale model for coastal stations but are somewhat more erroneous for the continental station. The mesoscale model data underestimate the spectral power of motions with less-than-semidiurnal periods.
    publisherAmerican Meteorological Society
    titleDynamical Downscaling of Wind Speed in Complex Terrain Prone To Bora-Type Flows
    typeJournal Paper
    journal volume50
    journal issue8
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2011JAMC2638.1
    journal fristpage1676
    journal lastpage1691
    treeJournal of Applied Meteorology and Climatology:;2011:;volume( 050 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian