YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulations of Contrail Optical Properties and Radiative Forcing for Various Crystal Shapes

    Source: Journal of Applied Meteorology and Climatology:;2011:;volume( 050 ):;issue: 008::page 1740
    Author:
    Markowicz, Krzysztof M.
    ,
    Witek, Marcin L.
    DOI: 10.1175/2011JAMC2618.1
    Publisher: American Meteorological Society
    Abstract: he aim of this study is to investigate the sensitivity of radiative-forcing computations to various contrail crystal shape models. Contrail optical properties in the shortwave and longwave ranges are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single-scattering albedo and the asymmetry parameter in a transition range (3?8 ?m). There are substantial differences in single-scattering properties among 10 crystal models investigated here (e.g., hexagonal columns and plates with different aspect ratios, and spherical particles). The single-scattering albedo and the asymmetry parameter both vary by up to 0.1 among various crystal shapes. The computed single-scattering properties are incorporated in the moderate-resolution atmospheric radiance and transmittance model (MODTRAN) radiative transfer code to simulate solar and infrared fluxes at the top of the atmosphere. Particle shapes have a strong impact on the contrail radiative forcing in both the shortwave and longwave ranges. The differences in the net radiative forcing among optical models reach 50% with respect to the mean model value. The hexagonal-column and hexagonal-plate particles show the smallest net radiative forcing, and the largest forcing is obtained for the spheres. The balance between the shortwave forcing and longwave forcing is highly sensitive with respect to the assumed crystal shape and may even change the sign of the net forcing. The optical depth at which the mean diurnal radiative forcing changes sign from positive to negative varies from 4.5 to 10 for a surface albedo of 0.2 and from 2 to 6.5 for a surface albedo of 0.05. Contrails are probably never that optically thick (except for some aged contrail cirrus), however, and so will not have a cooling effect on climate.
    • Download: (1.165Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulations of Contrail Optical Properties and Radiative Forcing for Various Crystal Shapes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213558
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorMarkowicz, Krzysztof M.
    contributor authorWitek, Marcin L.
    date accessioned2017-06-09T16:39:17Z
    date available2017-06-09T16:39:17Z
    date copyright2011/08/01
    date issued2011
    identifier issn1558-8424
    identifier otherams-71643.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213558
    description abstracthe aim of this study is to investigate the sensitivity of radiative-forcing computations to various contrail crystal shape models. Contrail optical properties in the shortwave and longwave ranges are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single-scattering albedo and the asymmetry parameter in a transition range (3?8 ?m). There are substantial differences in single-scattering properties among 10 crystal models investigated here (e.g., hexagonal columns and plates with different aspect ratios, and spherical particles). The single-scattering albedo and the asymmetry parameter both vary by up to 0.1 among various crystal shapes. The computed single-scattering properties are incorporated in the moderate-resolution atmospheric radiance and transmittance model (MODTRAN) radiative transfer code to simulate solar and infrared fluxes at the top of the atmosphere. Particle shapes have a strong impact on the contrail radiative forcing in both the shortwave and longwave ranges. The differences in the net radiative forcing among optical models reach 50% with respect to the mean model value. The hexagonal-column and hexagonal-plate particles show the smallest net radiative forcing, and the largest forcing is obtained for the spheres. The balance between the shortwave forcing and longwave forcing is highly sensitive with respect to the assumed crystal shape and may even change the sign of the net forcing. The optical depth at which the mean diurnal radiative forcing changes sign from positive to negative varies from 4.5 to 10 for a surface albedo of 0.2 and from 2 to 6.5 for a surface albedo of 0.05. Contrails are probably never that optically thick (except for some aged contrail cirrus), however, and so will not have a cooling effect on climate.
    publisherAmerican Meteorological Society
    titleSimulations of Contrail Optical Properties and Radiative Forcing for Various Crystal Shapes
    typeJournal Paper
    journal volume50
    journal issue8
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2011JAMC2618.1
    journal fristpage1740
    journal lastpage1755
    treeJournal of Applied Meteorology and Climatology:;2011:;volume( 050 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian