YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data

    Source: Journal of Climate:;2010:;volume( 024 ):;issue: 006::page 1598
    Author:
    Mace, Gerald G.
    ,
    Houser, Stephanie
    ,
    Benson, Sally
    ,
    Klein, Stephen A.
    ,
    Min, Qilong
    DOI: 10.1175/2010JCLI3517.1
    Publisher: American Meteorological Society
    Abstract: Given the known shortcomings in representing clouds in global climate models (GCMs), comparisons with observations are critical. The International Satellite Cloud Climatology Project (ISCCP) diagnostic products provide global descriptions of cloud-top pressure and column optical depth that extend over multiple decades. Given the characteristics of the ISCCP product, the model output must be converted into what the ISCCP algorithm would diagnose from an atmospheric column with similar physical characteristics. This study evaluates one component of this so-called ISCCP simulator by comparing ISCCP results with simulated ISCCP diagnostics that are derived from data collected at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility. It is shown that if a model were to simulate the cloud radiative profile with the same accuracy as can be derived from the ARM data, the likelihood of that occurrence being classified with similar cloud-top pressure and optical depth as ISCCP would range from 30% to 70% depending on optical depth. The ISCCP simulator improved the agreement of cloud-top pressure between ground-based remote sensors and satellite observations, and we find only minor discrepancies because of the parameterization of cloud-top pressure in the ISCCP simulator. The differences seem to be primarily due to discrepancies between satellite and ground-based sensors in the visible optical depth. The source of the optical depth bias appears to be due to subpixel cloud field variability in the retrieval of optical depths from satellite sensors. These comparisons suggest that caution should be applied to comparisons between models and ISCCP observations until the differences in visible optical depths are fully understood. The simultaneous use of ground-based and satellite retrievals in the evaluation of model clouds is encouraged.
    • Download: (1.989Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212336
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMace, Gerald G.
    contributor authorHouser, Stephanie
    contributor authorBenson, Sally
    contributor authorKlein, Stephen A.
    contributor authorMin, Qilong
    date accessioned2017-06-09T16:35:27Z
    date available2017-06-09T16:35:27Z
    date copyright2011/03/01
    date issued2010
    identifier issn0894-8755
    identifier otherams-70543.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212336
    description abstractGiven the known shortcomings in representing clouds in global climate models (GCMs), comparisons with observations are critical. The International Satellite Cloud Climatology Project (ISCCP) diagnostic products provide global descriptions of cloud-top pressure and column optical depth that extend over multiple decades. Given the characteristics of the ISCCP product, the model output must be converted into what the ISCCP algorithm would diagnose from an atmospheric column with similar physical characteristics. This study evaluates one component of this so-called ISCCP simulator by comparing ISCCP results with simulated ISCCP diagnostics that are derived from data collected at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility. It is shown that if a model were to simulate the cloud radiative profile with the same accuracy as can be derived from the ARM data, the likelihood of that occurrence being classified with similar cloud-top pressure and optical depth as ISCCP would range from 30% to 70% depending on optical depth. The ISCCP simulator improved the agreement of cloud-top pressure between ground-based remote sensors and satellite observations, and we find only minor discrepancies because of the parameterization of cloud-top pressure in the ISCCP simulator. The differences seem to be primarily due to discrepancies between satellite and ground-based sensors in the visible optical depth. The source of the optical depth bias appears to be due to subpixel cloud field variability in the retrieval of optical depths from satellite sensors. These comparisons suggest that caution should be applied to comparisons between models and ISCCP observations until the differences in visible optical depths are fully understood. The simultaneous use of ground-based and satellite retrievals in the evaluation of model clouds is encouraged.
    publisherAmerican Meteorological Society
    titleCritical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data
    typeJournal Paper
    journal volume24
    journal issue6
    journal titleJournal of Climate
    identifier doi10.1175/2010JCLI3517.1
    journal fristpage1598
    journal lastpage1612
    treeJournal of Climate:;2010:;volume( 024 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian