YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evolution of Multiscale Vortices in the Development of Hurricane Dolly (2008)

    Source: Journal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 001::page 103
    Author:
    Fang, Juan
    ,
    Zhang, Fuqing
    DOI: 10.1175/2010JAS3522.1
    Publisher: American Meteorological Society
    Abstract: As a follow-up to a previously published article on the initial development and genesis of Hurricane Dolly (2008), this study further examines the evolution of, and interactions among, multiscale vortices ranging from the system-scale main vortex (L > 150 km) to the intermediate-scale cloud clusters (50 km < L < 150 km) and individual vorticity-rich convective cells (L < 50 km). It is found that there are apparent self-similarities among these vortices at different scales, each of which may undergo several cycles of alternating accumulation and release of convective available potential energy. Enhanced surface fluxes below individual cyclonic vortices at each scale contribute to the sustainment and reinvigoration of moist convection that in turn contributes to the maintenance and upscale growth of these vortices. Spectral analysis of horizontal divergence and relative vorticity further suggests that the cloud-cluster-scale and system-scale vortices are predominantly balanced while the individual convective vortices are largely unbalanced. The vorticity and energy produced by these individual vorticity-rich convective cells first saturate at convective scales that are subsequently transferred to larger scales. The sum of the diabatic heating released from these convective cells may be regarded as a persistent forcing on the quasi-balanced system-scale vortex. The secondary circulation induced by such forcing converges the cluster- and convective-scale vorticity anomalies into the storm center region. Convergence and projections of the smaller-scale vorticity to the larger scales eventually produce the spinup of the system-scale vortex. Meanwhile, convectively induced negative vorticity anomalies also converge toward the storm center, which are weaker and shorter lived, and thus are absorbed rather than expelled.
    • Download: (5.142Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evolution of Multiscale Vortices in the Development of Hurricane Dolly (2008)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212059
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFang, Juan
    contributor authorZhang, Fuqing
    date accessioned2017-06-09T16:34:36Z
    date available2017-06-09T16:34:36Z
    date copyright2011/01/01
    date issued2011
    identifier issn0022-4928
    identifier otherams-70294.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212059
    description abstractAs a follow-up to a previously published article on the initial development and genesis of Hurricane Dolly (2008), this study further examines the evolution of, and interactions among, multiscale vortices ranging from the system-scale main vortex (L > 150 km) to the intermediate-scale cloud clusters (50 km < L < 150 km) and individual vorticity-rich convective cells (L < 50 km). It is found that there are apparent self-similarities among these vortices at different scales, each of which may undergo several cycles of alternating accumulation and release of convective available potential energy. Enhanced surface fluxes below individual cyclonic vortices at each scale contribute to the sustainment and reinvigoration of moist convection that in turn contributes to the maintenance and upscale growth of these vortices. Spectral analysis of horizontal divergence and relative vorticity further suggests that the cloud-cluster-scale and system-scale vortices are predominantly balanced while the individual convective vortices are largely unbalanced. The vorticity and energy produced by these individual vorticity-rich convective cells first saturate at convective scales that are subsequently transferred to larger scales. The sum of the diabatic heating released from these convective cells may be regarded as a persistent forcing on the quasi-balanced system-scale vortex. The secondary circulation induced by such forcing converges the cluster- and convective-scale vorticity anomalies into the storm center region. Convergence and projections of the smaller-scale vorticity to the larger scales eventually produce the spinup of the system-scale vortex. Meanwhile, convectively induced negative vorticity anomalies also converge toward the storm center, which are weaker and shorter lived, and thus are absorbed rather than expelled.
    publisherAmerican Meteorological Society
    titleEvolution of Multiscale Vortices in the Development of Hurricane Dolly (2008)
    typeJournal Paper
    journal volume68
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2010JAS3522.1
    journal fristpage103
    journal lastpage122
    treeJournal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian