Show simple item record

contributor authorFang, Juan
contributor authorZhang, Fuqing
date accessioned2017-06-09T16:34:36Z
date available2017-06-09T16:34:36Z
date copyright2011/01/01
date issued2011
identifier issn0022-4928
identifier otherams-70294.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212059
description abstractAs a follow-up to a previously published article on the initial development and genesis of Hurricane Dolly (2008), this study further examines the evolution of, and interactions among, multiscale vortices ranging from the system-scale main vortex (L > 150 km) to the intermediate-scale cloud clusters (50 km < L < 150 km) and individual vorticity-rich convective cells (L < 50 km). It is found that there are apparent self-similarities among these vortices at different scales, each of which may undergo several cycles of alternating accumulation and release of convective available potential energy. Enhanced surface fluxes below individual cyclonic vortices at each scale contribute to the sustainment and reinvigoration of moist convection that in turn contributes to the maintenance and upscale growth of these vortices. Spectral analysis of horizontal divergence and relative vorticity further suggests that the cloud-cluster-scale and system-scale vortices are predominantly balanced while the individual convective vortices are largely unbalanced. The vorticity and energy produced by these individual vorticity-rich convective cells first saturate at convective scales that are subsequently transferred to larger scales. The sum of the diabatic heating released from these convective cells may be regarded as a persistent forcing on the quasi-balanced system-scale vortex. The secondary circulation induced by such forcing converges the cluster- and convective-scale vorticity anomalies into the storm center region. Convergence and projections of the smaller-scale vorticity to the larger scales eventually produce the spinup of the system-scale vortex. Meanwhile, convectively induced negative vorticity anomalies also converge toward the storm center, which are weaker and shorter lived, and thus are absorbed rather than expelled.
publisherAmerican Meteorological Society
titleEvolution of Multiscale Vortices in the Development of Hurricane Dolly (2008)
typeJournal Paper
journal volume68
journal issue1
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/2010JAS3522.1
journal fristpage103
journal lastpage122
treeJournal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record