YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Residual Circulation and Tropopause Structure

    Source: Journal of the Atmospheric Sciences:;2010:;Volume( 067 ):;issue: 008::page 2582
    Author:
    Birner, Thomas
    DOI: 10.1175/2010JAS3287.1
    Publisher: American Meteorological Society
    Abstract: The effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied using a comprehensive chemistry?climate model (CCM), reanalysis data, and simple idealized modeling. Dynamical forcing of static stability as associated with the vertical structure of the residual circulation results in a dominant dipole forcing structure with negative static stability forcing just below the tropopause and positive static stability forcing just above the tropopause. This dipole forcing structure effectively sharpens the tropopause, especially during winter. Furthermore, the strong positive lowermost stratospheric static stability forcing causes a layer of strongly enhanced static stability just above the extratropical tropopause?a tropopause inversion layer (TIL)?especially in the winter midlatitudes. The strong positive static stability forcing is shown to be mainly due to the strong vertical gradient of the vertical residual velocity found just above the tropopause in the winter midlatitudes. Stratospheric radiative equilibrium (SRE) solutions are obtained using offline radiative transfer calculations for a given tropospheric climate as simulated by the CCM. The resulting tropopause height in SRE is reduced by several kilometers in the tropics but is increased by 1?2 km in the extratropics, strongly reducing the equator-to-pole contrast in tropopause height. Moreover, the TIL in winter midlatitudes disappears in the SRE solution in contrast to the polar summer TIL, which stays intact. When the SRE solution is modified to include the effect of stratospheric dynamics as represented by the stratospheric residual circulation, the TIL in winter midlatitudes is recovered, suggesting that the static stability forcing associated with the stratospheric residual circulation represents the main cause for the TIL in the winter midlatitudes whereas radiation seems dominant in causing the polar summer TIL.
    • Download: (2.745Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Residual Circulation and Tropopause Structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211915
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBirner, Thomas
    date accessioned2017-06-09T16:34:13Z
    date available2017-06-09T16:34:13Z
    date copyright2010/08/01
    date issued2010
    identifier issn0022-4928
    identifier otherams-70164.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211915
    description abstractThe effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied using a comprehensive chemistry?climate model (CCM), reanalysis data, and simple idealized modeling. Dynamical forcing of static stability as associated with the vertical structure of the residual circulation results in a dominant dipole forcing structure with negative static stability forcing just below the tropopause and positive static stability forcing just above the tropopause. This dipole forcing structure effectively sharpens the tropopause, especially during winter. Furthermore, the strong positive lowermost stratospheric static stability forcing causes a layer of strongly enhanced static stability just above the extratropical tropopause?a tropopause inversion layer (TIL)?especially in the winter midlatitudes. The strong positive static stability forcing is shown to be mainly due to the strong vertical gradient of the vertical residual velocity found just above the tropopause in the winter midlatitudes. Stratospheric radiative equilibrium (SRE) solutions are obtained using offline radiative transfer calculations for a given tropospheric climate as simulated by the CCM. The resulting tropopause height in SRE is reduced by several kilometers in the tropics but is increased by 1?2 km in the extratropics, strongly reducing the equator-to-pole contrast in tropopause height. Moreover, the TIL in winter midlatitudes disappears in the SRE solution in contrast to the polar summer TIL, which stays intact. When the SRE solution is modified to include the effect of stratospheric dynamics as represented by the stratospheric residual circulation, the TIL in winter midlatitudes is recovered, suggesting that the static stability forcing associated with the stratospheric residual circulation represents the main cause for the TIL in the winter midlatitudes whereas radiation seems dominant in causing the polar summer TIL.
    publisherAmerican Meteorological Society
    titleResidual Circulation and Tropopause Structure
    typeJournal Paper
    journal volume67
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2010JAS3287.1
    journal fristpage2582
    journal lastpage2600
    treeJournal of the Atmospheric Sciences:;2010:;Volume( 067 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian