Show simple item record

contributor authorBirner, Thomas
date accessioned2017-06-09T16:34:13Z
date available2017-06-09T16:34:13Z
date copyright2010/08/01
date issued2010
identifier issn0022-4928
identifier otherams-70164.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211915
description abstractThe effect of large-scale dynamics as represented by the residual mean meridional circulation in the transformed Eulerian sense, in particular its stratospheric part, on lower stratospheric static stability and tropopause structure is studied using a comprehensive chemistry?climate model (CCM), reanalysis data, and simple idealized modeling. Dynamical forcing of static stability as associated with the vertical structure of the residual circulation results in a dominant dipole forcing structure with negative static stability forcing just below the tropopause and positive static stability forcing just above the tropopause. This dipole forcing structure effectively sharpens the tropopause, especially during winter. Furthermore, the strong positive lowermost stratospheric static stability forcing causes a layer of strongly enhanced static stability just above the extratropical tropopause?a tropopause inversion layer (TIL)?especially in the winter midlatitudes. The strong positive static stability forcing is shown to be mainly due to the strong vertical gradient of the vertical residual velocity found just above the tropopause in the winter midlatitudes. Stratospheric radiative equilibrium (SRE) solutions are obtained using offline radiative transfer calculations for a given tropospheric climate as simulated by the CCM. The resulting tropopause height in SRE is reduced by several kilometers in the tropics but is increased by 1?2 km in the extratropics, strongly reducing the equator-to-pole contrast in tropopause height. Moreover, the TIL in winter midlatitudes disappears in the SRE solution in contrast to the polar summer TIL, which stays intact. When the SRE solution is modified to include the effect of stratospheric dynamics as represented by the stratospheric residual circulation, the TIL in winter midlatitudes is recovered, suggesting that the static stability forcing associated with the stratospheric residual circulation represents the main cause for the TIL in the winter midlatitudes whereas radiation seems dominant in causing the polar summer TIL.
publisherAmerican Meteorological Society
titleResidual Circulation and Tropopause Structure
typeJournal Paper
journal volume67
journal issue8
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/2010JAS3287.1
journal fristpage2582
journal lastpage2600
treeJournal of the Atmospheric Sciences:;2010:;Volume( 067 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record