YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameterizing Mesoscale Wind Uncertainty for Dispersion Modeling

    Source: Journal of Applied Meteorology and Climatology:;2010:;volume( 049 ):;issue: 008::page 1604
    Author:
    Peltier, Leonard J.
    ,
    Haupt, Sue Ellen
    ,
    Wyngaard, John C.
    ,
    Stauffer, David R.
    ,
    Deng, Aijun
    ,
    Lee, Jared A.
    ,
    Long, Kerrie J.
    ,
    Annunzio, Andrew J.
    DOI: 10.1175/2010JAMC2396.1
    Publisher: American Meteorological Society
    Abstract: A parameterization of numerical weather prediction uncertainty is presented for use by atmospheric transport and dispersion models. The theoretical development applies Taylor dispersion concepts to diagnose dispersion metrics from numerical wind field ensembles, where the ensemble variability approximates the wind field uncertainty. This analysis identifies persistent wind direction differences in the wind field ensemble as a leading source of enhanced ?virtual? dispersion, and thus enhanced uncertainty for the ensemble-mean contaminant plume. This dispersion is characterized by the Lagrangian integral time scale for the grid-resolved, large-scale, ?outer? flow that is imposed through the initial and boundary conditions and by the ensemble deviation-velocity variance. Excellent agreement is demonstrated between an explicit ensemble-mean contaminant plume generated from a Gaussian plume model applied to the individual wind field ensemble members and the modeled ensemble-mean plume formed from the one Gaussian plume simulation enhanced with the new ensemble dispersion metrics.
    • Download: (892.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameterizing Mesoscale Wind Uncertainty for Dispersion Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211759
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorPeltier, Leonard J.
    contributor authorHaupt, Sue Ellen
    contributor authorWyngaard, John C.
    contributor authorStauffer, David R.
    contributor authorDeng, Aijun
    contributor authorLee, Jared A.
    contributor authorLong, Kerrie J.
    contributor authorAnnunzio, Andrew J.
    date accessioned2017-06-09T16:33:44Z
    date available2017-06-09T16:33:44Z
    date copyright2010/08/01
    date issued2010
    identifier issn1558-8424
    identifier otherams-70023.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211759
    description abstractA parameterization of numerical weather prediction uncertainty is presented for use by atmospheric transport and dispersion models. The theoretical development applies Taylor dispersion concepts to diagnose dispersion metrics from numerical wind field ensembles, where the ensemble variability approximates the wind field uncertainty. This analysis identifies persistent wind direction differences in the wind field ensemble as a leading source of enhanced ?virtual? dispersion, and thus enhanced uncertainty for the ensemble-mean contaminant plume. This dispersion is characterized by the Lagrangian integral time scale for the grid-resolved, large-scale, ?outer? flow that is imposed through the initial and boundary conditions and by the ensemble deviation-velocity variance. Excellent agreement is demonstrated between an explicit ensemble-mean contaminant plume generated from a Gaussian plume model applied to the individual wind field ensemble members and the modeled ensemble-mean plume formed from the one Gaussian plume simulation enhanced with the new ensemble dispersion metrics.
    publisherAmerican Meteorological Society
    titleParameterizing Mesoscale Wind Uncertainty for Dispersion Modeling
    typeJournal Paper
    journal volume49
    journal issue8
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2010JAMC2396.1
    journal fristpage1604
    journal lastpage1614
    treeJournal of Applied Meteorology and Climatology:;2010:;volume( 049 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian