YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Validation of Satellite-Based High-Resolution Rainfall Products over the Korean Peninsula Using Data from a Dense Rain Gauge Network

    Source: Journal of Applied Meteorology and Climatology:;2009:;volume( 049 ):;issue: 004::page 701
    Author:
    Sohn, B. J.
    ,
    Han, Hyo-Jin
    ,
    Seo, Eun-Kyoung
    DOI: 10.1175/2009JAMC2266.1
    Publisher: American Meteorological Society
    Abstract: Four independently developed high-resolution precipitation products [HRPPs; the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), the Climate Prediction Center Morphing Method (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and the National Research Laboratory (NRL) blended precipitation dataset (NRL-blended)], with a spatial resolution of 0.25° and a temporal resolution of 3 h, were compared with surface rain measurements for the four summer seasons (June, July, and August) from 2003 to 2006. Surface measurements are 1-min rain gauge data from the Automated Weather Station (AWS) network operated by the Korean Meteorological Administration (KMA) over South Korea, which consists of about 520 sites. The summer mean rainfall and diurnal cycles of TMPA are comparable to those of the AWS, but with larger magnitudes. The closer agreement of TMPA with surface observations is due to the adjustment of the real-time version of TMPA products to monthly gauge measurements. However, the adjustment seems to result in significant overestimates for light or moderate rain events and thus increased RMS error. In the other three products (CMORPH, PERSIANN, and NRL-blended), significant underestimates are evident in the summer mean distribution and in scatterplots for the grid-by-grid comparison. The magnitudes of the diurnal cycles of the three products appear to be much smaller than those suggested by AWS, although CMORPH shows nearly the same diurnal phase as in AWS. Such underestimates by three methods are likely due to the deficiency of the passive microwave (PMW)-based rainfall retrievals over the South Korean region. More accurate PMW measurements (in particular by the improved land algorithm) seem to be a prerequisite for better estimates of the rain rate by HRPP algorithms. This paper further demonstrates the capability of the Korean AWS network data for validating satellite-based rain products.
    • Download: (3.531Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Validation of Satellite-Based High-Resolution Rainfall Products over the Korean Peninsula Using Data from a Dense Rain Gauge Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209915
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorSohn, B. J.
    contributor authorHan, Hyo-Jin
    contributor authorSeo, Eun-Kyoung
    date accessioned2017-06-09T16:28:00Z
    date available2017-06-09T16:28:00Z
    date copyright2010/04/01
    date issued2009
    identifier issn1558-8424
    identifier otherams-68365.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209915
    description abstractFour independently developed high-resolution precipitation products [HRPPs; the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), the Climate Prediction Center Morphing Method (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and the National Research Laboratory (NRL) blended precipitation dataset (NRL-blended)], with a spatial resolution of 0.25° and a temporal resolution of 3 h, were compared with surface rain measurements for the four summer seasons (June, July, and August) from 2003 to 2006. Surface measurements are 1-min rain gauge data from the Automated Weather Station (AWS) network operated by the Korean Meteorological Administration (KMA) over South Korea, which consists of about 520 sites. The summer mean rainfall and diurnal cycles of TMPA are comparable to those of the AWS, but with larger magnitudes. The closer agreement of TMPA with surface observations is due to the adjustment of the real-time version of TMPA products to monthly gauge measurements. However, the adjustment seems to result in significant overestimates for light or moderate rain events and thus increased RMS error. In the other three products (CMORPH, PERSIANN, and NRL-blended), significant underestimates are evident in the summer mean distribution and in scatterplots for the grid-by-grid comparison. The magnitudes of the diurnal cycles of the three products appear to be much smaller than those suggested by AWS, although CMORPH shows nearly the same diurnal phase as in AWS. Such underestimates by three methods are likely due to the deficiency of the passive microwave (PMW)-based rainfall retrievals over the South Korean region. More accurate PMW measurements (in particular by the improved land algorithm) seem to be a prerequisite for better estimates of the rain rate by HRPP algorithms. This paper further demonstrates the capability of the Korean AWS network data for validating satellite-based rain products.
    publisherAmerican Meteorological Society
    titleValidation of Satellite-Based High-Resolution Rainfall Products over the Korean Peninsula Using Data from a Dense Rain Gauge Network
    typeJournal Paper
    journal volume49
    journal issue4
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2009JAMC2266.1
    journal fristpage701
    journal lastpage714
    treeJournal of Applied Meteorology and Climatology:;2009:;volume( 049 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian