YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather

    Source: Journal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 012::page 2543
    Author:
    Schultz, Christopher J.
    ,
    Petersen, Walter A.
    ,
    Carey, Lawrence D.
    DOI: 10.1175/2009JAMC2237.1
    Publisher: American Meteorological Society
    Abstract: Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed ?lightning jumps.? Herein, the authors document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms from the Tennessee Valley; Washington, D.C.; Dallas, Texas; and Houston, Texas, were examined in this study. Of the 107 thunderstorms, 69 thunderstorms fall into the category of nonsevere and 38 into the category of severe. From the dataset of 69 isolated nonsevere thunderstorms, an average, peak, 1-min flash rate of 10 flashes per minute was determined. A variety of severe thunderstorm types were examined for this study, including a mesoscale convective system, mesoscale convective vortex, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 nonsevere, 38 severe) were from the Tennessee Valley and Washington, D.C., and these 85 thunderstorms tested six lightning jump algorithm configurations (Gatlin, Gatlin 45, 2σ, 3σ, Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2σ lightning jump algorithm had a high probability of detection (POD; 87%), a modest false-alarm rate (FAR; 33%), and a solid Heidke skill score (0.75). These statistics exceed current NWS warning statistics with this dataset; however, this algorithm needs further testing because there is a large difference in sample sizes. A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 min. The overall goal of this study is to advance the development of an operationally applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the Geostationary Operational Environmental Satellite Series R (GOES-R) Geostationary Lightning Mapper.
    • Download: (2.247Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209904
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorSchultz, Christopher J.
    contributor authorPetersen, Walter A.
    contributor authorCarey, Lawrence D.
    date accessioned2017-06-09T16:27:56Z
    date available2017-06-09T16:27:56Z
    date copyright2009/12/01
    date issued2009
    identifier issn1558-8424
    identifier otherams-68355.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209904
    description abstractPrevious studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed ?lightning jumps.? Herein, the authors document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms from the Tennessee Valley; Washington, D.C.; Dallas, Texas; and Houston, Texas, were examined in this study. Of the 107 thunderstorms, 69 thunderstorms fall into the category of nonsevere and 38 into the category of severe. From the dataset of 69 isolated nonsevere thunderstorms, an average, peak, 1-min flash rate of 10 flashes per minute was determined. A variety of severe thunderstorm types were examined for this study, including a mesoscale convective system, mesoscale convective vortex, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 nonsevere, 38 severe) were from the Tennessee Valley and Washington, D.C., and these 85 thunderstorms tested six lightning jump algorithm configurations (Gatlin, Gatlin 45, 2σ, 3σ, Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2σ lightning jump algorithm had a high probability of detection (POD; 87%), a modest false-alarm rate (FAR; 33%), and a solid Heidke skill score (0.75). These statistics exceed current NWS warning statistics with this dataset; however, this algorithm needs further testing because there is a large difference in sample sizes. A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 min. The overall goal of this study is to advance the development of an operationally applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the Geostationary Operational Environmental Satellite Series R (GOES-R) Geostationary Lightning Mapper.
    publisherAmerican Meteorological Society
    titlePreliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather
    typeJournal Paper
    journal volume48
    journal issue12
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2009JAMC2237.1
    journal fristpage2543
    journal lastpage2563
    treeJournal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian