YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme

    Source: Journal of Applied Meteorology and Climatology:;2010:;volume( 049 ):;issue: 001::page 146
    Author:
    Jung, Youngsun
    ,
    Xue, Ming
    ,
    Zhang, Guifu
    DOI: 10.1175/2009JAMC2178.1
    Publisher: American Meteorological Society
    Abstract: A new general polarimetric radar simulator for nonhydrostatic numerical weather prediction (NWP) models has been developed based on rigorous scattering calculations using the T-matrix method for reflectivity, differential reflectivity, specific differential phase, and copolar cross-correlation coefficient. A continuous melting process accounts for the entire spectrum of varying density and dielectric constants. This simulator is able to simulate polarimetric radar measurements at weather radar frequency bands and can take as input the prognostic variables of high-resolution NWP model simulations using one-, two-, and three-moment microphysics schemes. The simulator was applied at 10.7-cm wavelength to a model-simulated supercell storm using a double-moment (two moment) bulk microphysics scheme to examine its ability to simulate polarimetric signatures reported in observational studies. The simulated fields exhibited realistic polarimetric signatures that include ZDR and KDP columns, ZDR arc, midlevel ZDR and ?h? rings, hail signature, and KDP foot in terms of their general location, shape, and strength. The authors compared the simulation with one employing a single-moment (SM) microphysics scheme and found that certain signatures, such as ZDR arc, midlevel ZDR, and ?h? rings, cannot be reproduced with the latter. It is believed to be primarily caused by the limitation of the SM scheme in simulating the shift of the particle size distribution toward larger/smaller diameters, independent of mixing ratio. These results suggest that two- or higher-moment microphysics schemes should be used to adequately describe certain important microphysical processes. They also demonstrate the utility of a well-designed radar simulator for validating numerical models. In addition, the simulator can also serve as a training tool for forecasters to recognize polarimetric signatures that can be reproduced by advanced NWP models.
    • Download: (1.781Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209873
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorJung, Youngsun
    contributor authorXue, Ming
    contributor authorZhang, Guifu
    date accessioned2017-06-09T16:27:51Z
    date available2017-06-09T16:27:51Z
    date copyright2010/01/01
    date issued2010
    identifier issn1558-8424
    identifier otherams-68327.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209873
    description abstractA new general polarimetric radar simulator for nonhydrostatic numerical weather prediction (NWP) models has been developed based on rigorous scattering calculations using the T-matrix method for reflectivity, differential reflectivity, specific differential phase, and copolar cross-correlation coefficient. A continuous melting process accounts for the entire spectrum of varying density and dielectric constants. This simulator is able to simulate polarimetric radar measurements at weather radar frequency bands and can take as input the prognostic variables of high-resolution NWP model simulations using one-, two-, and three-moment microphysics schemes. The simulator was applied at 10.7-cm wavelength to a model-simulated supercell storm using a double-moment (two moment) bulk microphysics scheme to examine its ability to simulate polarimetric signatures reported in observational studies. The simulated fields exhibited realistic polarimetric signatures that include ZDR and KDP columns, ZDR arc, midlevel ZDR and ?h? rings, hail signature, and KDP foot in terms of their general location, shape, and strength. The authors compared the simulation with one employing a single-moment (SM) microphysics scheme and found that certain signatures, such as ZDR arc, midlevel ZDR, and ?h? rings, cannot be reproduced with the latter. It is believed to be primarily caused by the limitation of the SM scheme in simulating the shift of the particle size distribution toward larger/smaller diameters, independent of mixing ratio. These results suggest that two- or higher-moment microphysics schemes should be used to adequately describe certain important microphysical processes. They also demonstrate the utility of a well-designed radar simulator for validating numerical models. In addition, the simulator can also serve as a training tool for forecasters to recognize polarimetric signatures that can be reproduced by advanced NWP models.
    publisherAmerican Meteorological Society
    titleSimulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme
    typeJournal Paper
    journal volume49
    journal issue1
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2009JAMC2178.1
    journal fristpage146
    journal lastpage163
    treeJournal of Applied Meteorology and Climatology:;2010:;volume( 049 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian