YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Combined Multisensor Optimal Estimation Retrieval Algorithm for Oceanic Warm Rain Clouds

    Source: Journal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 011::page 2242
    Author:
    Rapp, Anita D.
    ,
    Elsaesser, G.
    ,
    Kummerow, C.
    DOI: 10.1175/2009JAMC2156.1
    Publisher: American Meteorological Society
    Abstract: The complicated interactions between cloud processes in the tropical hydrologic cycle and their responses to changes in environmental variables have been the focus of many recent investigations. Most studies that examine the response of the hydrologic cycle to temperature changes focus on deep convection and cirrus production, but recent results suggest that warm rain clouds may be more sensitive to temperature changes. These clouds are prevalent in the tropics and make considerable contributions to the radiation budget and to total tropical rainfall, as well as serving to moisten and precondition the atmosphere for deep convection. A change in the properties of these clouds in climate-change scenarios could have significant implications for the hydrologic cycle. Existing microwave and visible retrievals of warm rain cloud liquid water path (LWP) disagree over the range of sea surface temperatures (SST) observed in the tropical western Pacific Ocean. Although both retrieval methods show similar behavior for nonraining clouds, the two methods show very different warm-rain-cloud LWP responses to SST, both in magnitude and trend. This makes changes to the relationship between precipitation and cloud properties in changing temperature regimes difficult to interpret. A combined optimal estimation retrieval algorithm that takes advantage of the strengths of the different satellite measurements available on the Tropical Rainfall Measuring Mission (TRMM) satellite has been developed. Deconvolved TRMM Microwave Imager brightness temperatures are combined with cloud fraction from the Visible and Infrared Scanner and rainwater estimates from the TRMM precipitation radar to retrieve the cloud LWP in warm rain systems. This algorithm is novel in that it takes into account the water in the rain and estimates the LWP due to only the cloud water in a raining cloud, thus allowing investigation of the effects of precipitation on cloud properties.
    • Download: (1.152Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Combined Multisensor Optimal Estimation Retrieval Algorithm for Oceanic Warm Rain Clouds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209859
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorRapp, Anita D.
    contributor authorElsaesser, G.
    contributor authorKummerow, C.
    date accessioned2017-06-09T16:27:50Z
    date available2017-06-09T16:27:50Z
    date copyright2009/11/01
    date issued2009
    identifier issn1558-8424
    identifier otherams-68314.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209859
    description abstractThe complicated interactions between cloud processes in the tropical hydrologic cycle and their responses to changes in environmental variables have been the focus of many recent investigations. Most studies that examine the response of the hydrologic cycle to temperature changes focus on deep convection and cirrus production, but recent results suggest that warm rain clouds may be more sensitive to temperature changes. These clouds are prevalent in the tropics and make considerable contributions to the radiation budget and to total tropical rainfall, as well as serving to moisten and precondition the atmosphere for deep convection. A change in the properties of these clouds in climate-change scenarios could have significant implications for the hydrologic cycle. Existing microwave and visible retrievals of warm rain cloud liquid water path (LWP) disagree over the range of sea surface temperatures (SST) observed in the tropical western Pacific Ocean. Although both retrieval methods show similar behavior for nonraining clouds, the two methods show very different warm-rain-cloud LWP responses to SST, both in magnitude and trend. This makes changes to the relationship between precipitation and cloud properties in changing temperature regimes difficult to interpret. A combined optimal estimation retrieval algorithm that takes advantage of the strengths of the different satellite measurements available on the Tropical Rainfall Measuring Mission (TRMM) satellite has been developed. Deconvolved TRMM Microwave Imager brightness temperatures are combined with cloud fraction from the Visible and Infrared Scanner and rainwater estimates from the TRMM precipitation radar to retrieve the cloud LWP in warm rain systems. This algorithm is novel in that it takes into account the water in the rain and estimates the LWP due to only the cloud water in a raining cloud, thus allowing investigation of the effects of precipitation on cloud properties.
    publisherAmerican Meteorological Society
    titleA Combined Multisensor Optimal Estimation Retrieval Algorithm for Oceanic Warm Rain Clouds
    typeJournal Paper
    journal volume48
    journal issue11
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2009JAMC2156.1
    journal fristpage2242
    journal lastpage2256
    treeJournal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian