YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Verification of Tropical Cyclone–Related Satellite Precipitation Estimates in Mainland China

    Source: Journal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 011::page 2227
    Author:
    Yu, Zifeng
    ,
    Yu, Hui
    ,
    Chen, Peiyan
    ,
    Qian, Chuanhai
    ,
    Yue, Caijun
    DOI: 10.1175/2009JAMC2143.1
    Publisher: American Meteorological Society
    Abstract: To evaluate the abilities of satellite retrievals in reflecting precipitation features related to tropical cyclones (TCs) affecting mainland China, four years of 6- and 24-h precipitation retrievals from three datasets, namely the Tropical Rainfall Measuring Mission satellite algorithm 3B42, version 6 (3B42), Climate Prediction Center morphed (CMORPH) product, and one based on the Geostationary Meteorological Satellite-5 infrared brightness temperature (GMS5-TBB), are compared statistically with direct measurements from surface gauge rainfall data during the periods affected by TCs. The GMS5-TBB dataset was set up by a method of considering the GMS5-TBB characteristics, hourly precipitation intensity, and horizontal distribution for landfalling TCs. The results show that in a general sense, all three satellite-retrieved rainfall datasets give quite reasonable 6- and 24-h rainfall distributions, with skill decreasing with the increase in both latitude and rainfall amount. The 3B42 has a little bit better skill than CMORPH, which is likely related to the fact that the 3B42 product has a rain gauge adjustment and CMORPH does not. Further analyses show that both 3B42 and CMORPH considerably underestimate the moderate and heavy rainfall and overestimate the very light precipitation. The overestimation of the GMS5-TBB data for the light rain is larger than that for 3B42 and CMORPH, probably due to the fact that the GMS5-TBB method considers stratiform and convective rainfall separately with a fixed stratiform rain rate of 2 mm h?1. For the heavy rainfall events, the GMS5-TBB data perform much better than the 3B42 and CMORPH data with an almost halved bias, owing to the fact that the GMS5-TBB method adopted the adjustment of the convective rain rate by considering TBB characteristics of landfalling TCs and using hourly gauge rainfall in the setup process. Since the heavy rainfall events associated with landfalling TCs are of the most concern, the compared GMS5-TBB data could be useful as an operational/research reference.
    • Download: (4.279Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Verification of Tropical Cyclone–Related Satellite Precipitation Estimates in Mainland China

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209848
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorYu, Zifeng
    contributor authorYu, Hui
    contributor authorChen, Peiyan
    contributor authorQian, Chuanhai
    contributor authorYue, Caijun
    date accessioned2017-06-09T16:27:47Z
    date available2017-06-09T16:27:47Z
    date copyright2009/11/01
    date issued2009
    identifier issn1558-8424
    identifier otherams-68304.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209848
    description abstractTo evaluate the abilities of satellite retrievals in reflecting precipitation features related to tropical cyclones (TCs) affecting mainland China, four years of 6- and 24-h precipitation retrievals from three datasets, namely the Tropical Rainfall Measuring Mission satellite algorithm 3B42, version 6 (3B42), Climate Prediction Center morphed (CMORPH) product, and one based on the Geostationary Meteorological Satellite-5 infrared brightness temperature (GMS5-TBB), are compared statistically with direct measurements from surface gauge rainfall data during the periods affected by TCs. The GMS5-TBB dataset was set up by a method of considering the GMS5-TBB characteristics, hourly precipitation intensity, and horizontal distribution for landfalling TCs. The results show that in a general sense, all three satellite-retrieved rainfall datasets give quite reasonable 6- and 24-h rainfall distributions, with skill decreasing with the increase in both latitude and rainfall amount. The 3B42 has a little bit better skill than CMORPH, which is likely related to the fact that the 3B42 product has a rain gauge adjustment and CMORPH does not. Further analyses show that both 3B42 and CMORPH considerably underestimate the moderate and heavy rainfall and overestimate the very light precipitation. The overestimation of the GMS5-TBB data for the light rain is larger than that for 3B42 and CMORPH, probably due to the fact that the GMS5-TBB method considers stratiform and convective rainfall separately with a fixed stratiform rain rate of 2 mm h?1. For the heavy rainfall events, the GMS5-TBB data perform much better than the 3B42 and CMORPH data with an almost halved bias, owing to the fact that the GMS5-TBB method adopted the adjustment of the convective rain rate by considering TBB characteristics of landfalling TCs and using hourly gauge rainfall in the setup process. Since the heavy rainfall events associated with landfalling TCs are of the most concern, the compared GMS5-TBB data could be useful as an operational/research reference.
    publisherAmerican Meteorological Society
    titleVerification of Tropical Cyclone–Related Satellite Precipitation Estimates in Mainland China
    typeJournal Paper
    journal volume48
    journal issue11
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2009JAMC2143.1
    journal fristpage2227
    journal lastpage2241
    treeJournal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian