YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Toward Understanding the Value of Climate Information for Multiobjective Reservoir Management under Present and Future Climate and Demand Scenarios

    Source: Journal of Applied Meteorology and Climatology:;2009:;volume( 049 ):;issue: 004::page 557
    Author:
    Graham, Nicholas E.
    ,
    Georgakakos, Konstantine P.
    DOI: 10.1175/2009JAMC2135.1
    Publisher: American Meteorological Society
    Abstract: Numerical simulation techniques and idealized reservoir management models are used to assess the utility of climate information for the effective management of a single multiobjective reservoir. Reservoir management considers meeting release and reservoir volume targets and minimizing wasteful spillage. The influence of reservoir size and inflow variability parameters on the management benefits is examined. The effects of climate and demand (release target) change on the management policies and performance are also quantified for various change scenarios. Inflow forecasts emulate ensembles of dynamical forecasts for a hypothetical climate system with somewhat predictable low-frequency variability. The analysis considers the impacts of forecast skill. The mathematical problem is cast in a dimensionless time and volume framework to allow generalization. The present work complements existing research results for specific applications and expands earlier analytical results for simpler management situations in an effort to draw general conclusions for the present-day reservoir management problem under uncertainty. The findings support the following conclusions: (i) reliable inflow forecasts are beneficial for reservoir management under most situations if adaptive management is employed; (ii) tolerance to forecasts of lower reliability tends to be higher for larger reservoirs; (iii) reliable inflow forecasts are most useful for a midrange of reservoir capacities; (iv) demand changes are more detrimental to reservoir management performance than inflow change effects of similar magnitude; (v) adaptive management is effective for mitigating climatic change effects and may even help to mitigate demand change effects.
    • Download: (2.262Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Toward Understanding the Value of Climate Information for Multiobjective Reservoir Management under Present and Future Climate and Demand Scenarios

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209842
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorGraham, Nicholas E.
    contributor authorGeorgakakos, Konstantine P.
    date accessioned2017-06-09T16:27:46Z
    date available2017-06-09T16:27:46Z
    date copyright2010/04/01
    date issued2009
    identifier issn1558-8424
    identifier otherams-68300.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209842
    description abstractNumerical simulation techniques and idealized reservoir management models are used to assess the utility of climate information for the effective management of a single multiobjective reservoir. Reservoir management considers meeting release and reservoir volume targets and minimizing wasteful spillage. The influence of reservoir size and inflow variability parameters on the management benefits is examined. The effects of climate and demand (release target) change on the management policies and performance are also quantified for various change scenarios. Inflow forecasts emulate ensembles of dynamical forecasts for a hypothetical climate system with somewhat predictable low-frequency variability. The analysis considers the impacts of forecast skill. The mathematical problem is cast in a dimensionless time and volume framework to allow generalization. The present work complements existing research results for specific applications and expands earlier analytical results for simpler management situations in an effort to draw general conclusions for the present-day reservoir management problem under uncertainty. The findings support the following conclusions: (i) reliable inflow forecasts are beneficial for reservoir management under most situations if adaptive management is employed; (ii) tolerance to forecasts of lower reliability tends to be higher for larger reservoirs; (iii) reliable inflow forecasts are most useful for a midrange of reservoir capacities; (iv) demand changes are more detrimental to reservoir management performance than inflow change effects of similar magnitude; (v) adaptive management is effective for mitigating climatic change effects and may even help to mitigate demand change effects.
    publisherAmerican Meteorological Society
    titleToward Understanding the Value of Climate Information for Multiobjective Reservoir Management under Present and Future Climate and Demand Scenarios
    typeJournal Paper
    journal volume49
    journal issue4
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2009JAMC2135.1
    journal fristpage557
    journal lastpage573
    treeJournal of Applied Meteorology and Climatology:;2009:;volume( 049 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian