YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application and Comparison of Robust Linear Regression Methods for Trend Estimation

    Source: Journal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 009::page 1961
    Author:
    Muhlbauer, Andreas
    ,
    Spichtinger, Peter
    ,
    Lohmann, Ulrike
    DOI: 10.1175/2009JAMC1851.1
    Publisher: American Meteorological Society
    Abstract: In this study, robust parametric regression methods are applied to temperature and precipitation time series in Switzerland and the trend results are compared with trends from classical least squares (LS) regression and nonparametric approaches. It is found that in individual time series statistically outlying observations are present that influence the LS trend estimate severely. In some cases, these outlying observations lead to an over-/underestimation of the trends or even to a trend masking. In comparison with the classical LS method and standard nonparametric techniques, the use of robust methods yields more reliable trend estimations and outlier detection.
    • Download: (1.596Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application and Comparison of Robust Linear Regression Methods for Trend Estimation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209764
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorMuhlbauer, Andreas
    contributor authorSpichtinger, Peter
    contributor authorLohmann, Ulrike
    date accessioned2017-06-09T16:27:33Z
    date available2017-06-09T16:27:33Z
    date copyright2009/09/01
    date issued2009
    identifier issn1558-8424
    identifier otherams-68229.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209764
    description abstractIn this study, robust parametric regression methods are applied to temperature and precipitation time series in Switzerland and the trend results are compared with trends from classical least squares (LS) regression and nonparametric approaches. It is found that in individual time series statistically outlying observations are present that influence the LS trend estimate severely. In some cases, these outlying observations lead to an over-/underestimation of the trends or even to a trend masking. In comparison with the classical LS method and standard nonparametric techniques, the use of robust methods yields more reliable trend estimations and outlier detection.
    publisherAmerican Meteorological Society
    titleApplication and Comparison of Robust Linear Regression Methods for Trend Estimation
    typeJournal Paper
    journal volume48
    journal issue9
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2009JAMC1851.1
    journal fristpage1961
    journal lastpage1970
    treeJournal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian