YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization

    Source: Journal of Climate:;2004:;volume( 017 ):;issue: 018::page 3477
    Author:
    Knutson, Thomas R.
    ,
    Tuleya, Robert E.
    DOI: 10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Previous studies have found that idealized hurricanes, simulated under warmer, high-CO2 conditions, are more intense and have higher precipitation rates than under present-day conditions. The present study explores the sensitivity of this result to the choice of climate model used to define the CO2-warmed environment and to the choice of convective parameterization used in the nested regional model that simulates the hurricanes. Approximately 1300 five-day idealized simulations are performed using a higher-resolution version of the GFDL hurricane prediction system (grid spacing as fine as 9 km, with 42 levels). All storms were embedded in a uniform 5 m s?1 easterly background flow. The large-scale thermodynamic boundary conditions for the experiments? atmospheric temperature and moisture profiles and SSTs?are derived from nine different Coupled Model Intercomparison Project (CMIP2+) climate models. The CO2-induced SST changes from the global climate models, based on 80-yr linear trends from +1% yr?1 CO2 increase experiments, range from about +0.8° to +2.4°C in the three tropical storm basins studied. Four different moist convection parameterizations are tested in the hurricane model, including the use of no convective parameterization in the highest resolution inner grid. Nearly all combinations of climate model boundary conditions and hurricane model convection schemes show a CO2-induced increase in both storm intensity and near-storm precipitation rates. The aggregate results, averaged across all experiments, indicate a 14% increase in central pressure fall, a 6% increase in maximum surface wind speed, and an 18% increase in average precipitation rate within 100 km of the storm center. The fractional change in precipitation is more sensitive to the choice of convective parameterization than is the fractional change of intensity. Current hurricane potential intensity theories, applied to the climate model environments, yield an average increase of intensity (pressure fall) of 8% (Emanuel) to 16% (Holland) for the high-CO2 environments. Convective available potential energy (CAPE) is 21% higher on average in the high-CO2 environments. One implication of the results is that if the frequency of tropical cyclones remains the same over the coming century, a greenhouse gas?induced warming may lead to a gradually increasing risk in the occurrence of highly destructive category-5 storms.
    • Download: (884.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208489
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKnutson, Thomas R.
    contributor authorTuleya, Robert E.
    date accessioned2017-06-09T16:23:41Z
    date available2017-06-09T16:23:41Z
    date copyright2004/09/01
    date issued2004
    identifier issn0894-8755
    identifier otherams-6708.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208489
    description abstractPrevious studies have found that idealized hurricanes, simulated under warmer, high-CO2 conditions, are more intense and have higher precipitation rates than under present-day conditions. The present study explores the sensitivity of this result to the choice of climate model used to define the CO2-warmed environment and to the choice of convective parameterization used in the nested regional model that simulates the hurricanes. Approximately 1300 five-day idealized simulations are performed using a higher-resolution version of the GFDL hurricane prediction system (grid spacing as fine as 9 km, with 42 levels). All storms were embedded in a uniform 5 m s?1 easterly background flow. The large-scale thermodynamic boundary conditions for the experiments? atmospheric temperature and moisture profiles and SSTs?are derived from nine different Coupled Model Intercomparison Project (CMIP2+) climate models. The CO2-induced SST changes from the global climate models, based on 80-yr linear trends from +1% yr?1 CO2 increase experiments, range from about +0.8° to +2.4°C in the three tropical storm basins studied. Four different moist convection parameterizations are tested in the hurricane model, including the use of no convective parameterization in the highest resolution inner grid. Nearly all combinations of climate model boundary conditions and hurricane model convection schemes show a CO2-induced increase in both storm intensity and near-storm precipitation rates. The aggregate results, averaged across all experiments, indicate a 14% increase in central pressure fall, a 6% increase in maximum surface wind speed, and an 18% increase in average precipitation rate within 100 km of the storm center. The fractional change in precipitation is more sensitive to the choice of convective parameterization than is the fractional change of intensity. Current hurricane potential intensity theories, applied to the climate model environments, yield an average increase of intensity (pressure fall) of 8% (Emanuel) to 16% (Holland) for the high-CO2 environments. Convective available potential energy (CAPE) is 21% higher on average in the high-CO2 environments. One implication of the results is that if the frequency of tropical cyclones remains the same over the coming century, a greenhouse gas?induced warming may lead to a gradually increasing risk in the occurrence of highly destructive category-5 storms.
    publisherAmerican Meteorological Society
    titleImpact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization
    typeJournal Paper
    journal volume17
    journal issue18
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2
    journal fristpage3477
    journal lastpage3495
    treeJournal of Climate:;2004:;volume( 017 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian