Show simple item record

contributor authorKnutson, Thomas R.
contributor authorTuleya, Robert E.
date accessioned2017-06-09T16:23:41Z
date available2017-06-09T16:23:41Z
date copyright2004/09/01
date issued2004
identifier issn0894-8755
identifier otherams-6708.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208489
description abstractPrevious studies have found that idealized hurricanes, simulated under warmer, high-CO2 conditions, are more intense and have higher precipitation rates than under present-day conditions. The present study explores the sensitivity of this result to the choice of climate model used to define the CO2-warmed environment and to the choice of convective parameterization used in the nested regional model that simulates the hurricanes. Approximately 1300 five-day idealized simulations are performed using a higher-resolution version of the GFDL hurricane prediction system (grid spacing as fine as 9 km, with 42 levels). All storms were embedded in a uniform 5 m s?1 easterly background flow. The large-scale thermodynamic boundary conditions for the experiments? atmospheric temperature and moisture profiles and SSTs?are derived from nine different Coupled Model Intercomparison Project (CMIP2+) climate models. The CO2-induced SST changes from the global climate models, based on 80-yr linear trends from +1% yr?1 CO2 increase experiments, range from about +0.8° to +2.4°C in the three tropical storm basins studied. Four different moist convection parameterizations are tested in the hurricane model, including the use of no convective parameterization in the highest resolution inner grid. Nearly all combinations of climate model boundary conditions and hurricane model convection schemes show a CO2-induced increase in both storm intensity and near-storm precipitation rates. The aggregate results, averaged across all experiments, indicate a 14% increase in central pressure fall, a 6% increase in maximum surface wind speed, and an 18% increase in average precipitation rate within 100 km of the storm center. The fractional change in precipitation is more sensitive to the choice of convective parameterization than is the fractional change of intensity. Current hurricane potential intensity theories, applied to the climate model environments, yield an average increase of intensity (pressure fall) of 8% (Emanuel) to 16% (Holland) for the high-CO2 environments. Convective available potential energy (CAPE) is 21% higher on average in the high-CO2 environments. One implication of the results is that if the frequency of tropical cyclones remains the same over the coming century, a greenhouse gas?induced warming may lead to a gradually increasing risk in the occurrence of highly destructive category-5 storms.
publisherAmerican Meteorological Society
titleImpact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization
typeJournal Paper
journal volume17
journal issue18
journal titleJournal of Climate
identifier doi10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2
journal fristpage3477
journal lastpage3495
treeJournal of Climate:;2004:;volume( 017 ):;issue: 018
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record