YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development and Testing of Canada-Wide Interpolated Spatial Models of Daily Minimum–Maximum Temperature and Precipitation for 1961–2003

    Source: Journal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 004::page 725
    Author:
    Hutchinson, Michael F.
    ,
    McKenney, Dan W.
    ,
    Lawrence, Kevin
    ,
    Pedlar, John H.
    ,
    Hopkinson, Ron F.
    ,
    Milewska, Ewa
    ,
    Papadopol, Pia
    DOI: 10.1175/2008JAMC1979.1
    Publisher: American Meteorological Society
    Abstract: The application of trivariate thin-plate smoothing splines to the interpolation of daily weather data is investigated. The method was used to develop spatial models of daily minimum and maximum temperature and daily precipitation for all of Canada, at a spatial resolution of 300 arc s of latitude and longitude, for the period 1961?2003. Each daily model was optimized automatically by minimizing the generalized cross validation. The fitted trivariate splines incorporated a spatially varying dependence on ground elevation and were able to adapt automatically to the large variation in station density over Canada. Extensive quality control measures were performed on the source data. Error estimates for the fitted surfaces based on withheld data across southern Canada were comparable to, or smaller than, errors obtained by daily interpolation studies elsewhere with denser data networks. Mean absolute errors in daily maximum and minimum temperature averaged over all years were 1.1° and 1.6°C, respectively. Daily temperature extremes were also well matched. Daily precipitation is challenging because of short correlation length scales, the preponderance of zeros, and significant error associated with measurement of snow. A two-stage approach was adopted in which precipitation occurrence was estimated and then used in conjunction with a surface of positive precipitation values. Daily precipitation occurrence was correctly predicted 83% of the time. Withheld errors in daily precipitation were small, with mean absolute errors of 2.9 mm, although these were relatively large in percentage terms. However, mean percent absolute errors in seasonal and annual precipitation totals were 14% and 9%, respectively, and seasonal precipitation upper 95th percentiles were attenuated on average by 8%. Precipitation and daily maximum temperatures were most accurately interpolated in the autumn, consistent with the large well-organized synoptic systems that prevail in this season. Daily minimum temperatures were most accurately interpolated in summer. The withheld data tests indicate that the models can be used with confidence across southern Canada in applications that depend on daily temperature and accumulated seasonal and annual precipitation. They should be used with care in applications that depend critically on daily precipitation extremes.
    • Download: (1.612Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development and Testing of Canada-Wide Interpolated Spatial Models of Daily Minimum–Maximum Temperature and Precipitation for 1961–2003

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208077
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorHutchinson, Michael F.
    contributor authorMcKenney, Dan W.
    contributor authorLawrence, Kevin
    contributor authorPedlar, John H.
    contributor authorHopkinson, Ron F.
    contributor authorMilewska, Ewa
    contributor authorPapadopol, Pia
    date accessioned2017-06-09T16:22:31Z
    date available2017-06-09T16:22:31Z
    date copyright2009/04/01
    date issued2009
    identifier issn1558-8424
    identifier otherams-66711.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208077
    description abstractThe application of trivariate thin-plate smoothing splines to the interpolation of daily weather data is investigated. The method was used to develop spatial models of daily minimum and maximum temperature and daily precipitation for all of Canada, at a spatial resolution of 300 arc s of latitude and longitude, for the period 1961?2003. Each daily model was optimized automatically by minimizing the generalized cross validation. The fitted trivariate splines incorporated a spatially varying dependence on ground elevation and were able to adapt automatically to the large variation in station density over Canada. Extensive quality control measures were performed on the source data. Error estimates for the fitted surfaces based on withheld data across southern Canada were comparable to, or smaller than, errors obtained by daily interpolation studies elsewhere with denser data networks. Mean absolute errors in daily maximum and minimum temperature averaged over all years were 1.1° and 1.6°C, respectively. Daily temperature extremes were also well matched. Daily precipitation is challenging because of short correlation length scales, the preponderance of zeros, and significant error associated with measurement of snow. A two-stage approach was adopted in which precipitation occurrence was estimated and then used in conjunction with a surface of positive precipitation values. Daily precipitation occurrence was correctly predicted 83% of the time. Withheld errors in daily precipitation were small, with mean absolute errors of 2.9 mm, although these were relatively large in percentage terms. However, mean percent absolute errors in seasonal and annual precipitation totals were 14% and 9%, respectively, and seasonal precipitation upper 95th percentiles were attenuated on average by 8%. Precipitation and daily maximum temperatures were most accurately interpolated in the autumn, consistent with the large well-organized synoptic systems that prevail in this season. Daily minimum temperatures were most accurately interpolated in summer. The withheld data tests indicate that the models can be used with confidence across southern Canada in applications that depend on daily temperature and accumulated seasonal and annual precipitation. They should be used with care in applications that depend critically on daily precipitation extremes.
    publisherAmerican Meteorological Society
    titleDevelopment and Testing of Canada-Wide Interpolated Spatial Models of Daily Minimum–Maximum Temperature and Precipitation for 1961–2003
    typeJournal Paper
    journal volume48
    journal issue4
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2008JAMC1979.1
    journal fristpage725
    journal lastpage741
    treeJournal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian