YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Gust Factors and Turbulence Intensities for the Tropical Cyclone Environment

    Source: Journal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 003::page 534
    Author:
    Yu, Bo
    ,
    Gan Chowdhury, Arindam
    DOI: 10.1175/2008JAMC1906.1
    Publisher: American Meteorological Society
    Abstract: Gust factors are used to convert peak wind speeds averaged over a relatively short period (e.g., 3 s) to mean wind speeds averaged over a relatively long reference period (e.g., 1 h) or vice versa. Such conversions are needed for engineering, climatological, or forecasting purposes. In this paper, gust factors in tropical cyclone (TC) winds are estimated from Florida Coastal Monitoring Program (FCMP) observations of near-surface TC wind speeds representative of flow over the sea surface and over open flat terrain in coastal areas. Comparisons are made with gust factors in extratropical winds over open flat terrain that are available in the literature. According to the results of the study, for gust durations of less than 20 s, the Durst model underestimates, and the Krayer?Marshall model overestimates, gust factors of TC winds over surfaces with roughness specified in the American Society of Civil Engineers (ASCE) 7 Standard Commentary as typical of open terrain. Consideration should be given to these findings when updating the gust factors provided in the ASCE 7 Standard Commentary. The study also compares gust factors in TC winds obtained from FCMP data with gust factors in extratropical winds obtained from near-surface wind data collected at eight Automated Surface Observing System (ASOS) stations and concludes that, depending upon terrain roughness, gust factors in TC winds can be higher by about 10%?15% than gust factors in extratropical winds. The study also presents FCMP-based estimates of turbulence intensities and their variability and shows that turbulence intensities in TC winds increase as the terrain roughness increases. The longitudinal turbulence intensity can vary from storm to storm and can exceed its typical value by as much as 20%. It is recommended that future TC wind measurement campaigns obtain temperature data usable for stratification estimation purposes, as well as information on waves and storm surge upwind of the anemometer towers.
    • Download: (2.480Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Gust Factors and Turbulence Intensities for the Tropical Cyclone Environment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4208037
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorYu, Bo
    contributor authorGan Chowdhury, Arindam
    date accessioned2017-06-09T16:22:25Z
    date available2017-06-09T16:22:25Z
    date copyright2009/03/01
    date issued2009
    identifier issn1558-8424
    identifier otherams-66675.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4208037
    description abstractGust factors are used to convert peak wind speeds averaged over a relatively short period (e.g., 3 s) to mean wind speeds averaged over a relatively long reference period (e.g., 1 h) or vice versa. Such conversions are needed for engineering, climatological, or forecasting purposes. In this paper, gust factors in tropical cyclone (TC) winds are estimated from Florida Coastal Monitoring Program (FCMP) observations of near-surface TC wind speeds representative of flow over the sea surface and over open flat terrain in coastal areas. Comparisons are made with gust factors in extratropical winds over open flat terrain that are available in the literature. According to the results of the study, for gust durations of less than 20 s, the Durst model underestimates, and the Krayer?Marshall model overestimates, gust factors of TC winds over surfaces with roughness specified in the American Society of Civil Engineers (ASCE) 7 Standard Commentary as typical of open terrain. Consideration should be given to these findings when updating the gust factors provided in the ASCE 7 Standard Commentary. The study also compares gust factors in TC winds obtained from FCMP data with gust factors in extratropical winds obtained from near-surface wind data collected at eight Automated Surface Observing System (ASOS) stations and concludes that, depending upon terrain roughness, gust factors in TC winds can be higher by about 10%?15% than gust factors in extratropical winds. The study also presents FCMP-based estimates of turbulence intensities and their variability and shows that turbulence intensities in TC winds increase as the terrain roughness increases. The longitudinal turbulence intensity can vary from storm to storm and can exceed its typical value by as much as 20%. It is recommended that future TC wind measurement campaigns obtain temperature data usable for stratification estimation purposes, as well as information on waves and storm surge upwind of the anemometer towers.
    publisherAmerican Meteorological Society
    titleGust Factors and Turbulence Intensities for the Tropical Cyclone Environment
    typeJournal Paper
    journal volume48
    journal issue3
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2008JAMC1906.1
    journal fristpage534
    journal lastpage552
    treeJournal of Applied Meteorology and Climatology:;2009:;volume( 048 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian