YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Asymptotic Analysis of Equilibrium in Radiation Fog

    Source: Journal of Applied Meteorology and Climatology:;2008:;volume( 047 ):;issue: 006::page 1704
    Author:
    Zhou, Binbin
    ,
    Ferrier, Brad S.
    DOI: 10.1175/2007JAMC1685.1
    Publisher: American Meteorological Society
    Abstract: A vertical distribution formulation of liquid water content (LWC) for steady radiation fog was obtained and examined through the singular perturbation method. The asymptotic LWC distribution is a consequential balance among cooling, droplet gravitational settling, and turbulence in the liquid water budget of radiation fog. The cooling produces liquid water, which is depleted by turbulence near the surface. The influence of turbulence on the liquid water budget decreases with height and is more significant for shallow fogs than for deep fogs. The depth of the region of surface-induced turbulence can be characterized with a fog boundary layer (FBL). The behavior of the FBL bears some resemblance to the surface mixing layer in radiation fog. The characteristic depth of the FBL is thinner for weaker turbulence and stronger cooling, whereas if turbulence intensity increases or cooling rate decreases then the FBL will develop from the ground. The asymptotic formulation also reveals a critical turbulent exchange coefficient for radiation fog that defines the upper bound of turbulence intensity that a steady fog can withstand. The deeper a fog is, the stronger a turbulence intensity it can endure. The persistence condition for a steady fog can be parameterized by either the critical turbulent exchange coefficient or the characteristic depth of the FBL. If the turbulence intensity inside a fog is smaller than the turbulence threshold, the fog persists, whereas if the turbulence intensity exceeds the turbulence threshold or the characteristic depth of the FBL dominates the entire fog bank then the balance will be destroyed, leading to dissipation of the existing fog. The asymptotic formulation has a first-order approximation with respect to turbulence intensity. Verifications with numerical solutions and an observed fog event showed that it is more accurate for weak turbulence than for strong turbulence and that the computed LWC generally agrees with the observed LWC in magnitude.
    • Download: (1.540Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Asymptotic Analysis of Equilibrium in Radiation Fog

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206599
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorZhou, Binbin
    contributor authorFerrier, Brad S.
    date accessioned2017-06-09T16:18:18Z
    date available2017-06-09T16:18:18Z
    date copyright2008/06/01
    date issued2008
    identifier issn1558-8424
    identifier otherams-65381.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206599
    description abstractA vertical distribution formulation of liquid water content (LWC) for steady radiation fog was obtained and examined through the singular perturbation method. The asymptotic LWC distribution is a consequential balance among cooling, droplet gravitational settling, and turbulence in the liquid water budget of radiation fog. The cooling produces liquid water, which is depleted by turbulence near the surface. The influence of turbulence on the liquid water budget decreases with height and is more significant for shallow fogs than for deep fogs. The depth of the region of surface-induced turbulence can be characterized with a fog boundary layer (FBL). The behavior of the FBL bears some resemblance to the surface mixing layer in radiation fog. The characteristic depth of the FBL is thinner for weaker turbulence and stronger cooling, whereas if turbulence intensity increases or cooling rate decreases then the FBL will develop from the ground. The asymptotic formulation also reveals a critical turbulent exchange coefficient for radiation fog that defines the upper bound of turbulence intensity that a steady fog can withstand. The deeper a fog is, the stronger a turbulence intensity it can endure. The persistence condition for a steady fog can be parameterized by either the critical turbulent exchange coefficient or the characteristic depth of the FBL. If the turbulence intensity inside a fog is smaller than the turbulence threshold, the fog persists, whereas if the turbulence intensity exceeds the turbulence threshold or the characteristic depth of the FBL dominates the entire fog bank then the balance will be destroyed, leading to dissipation of the existing fog. The asymptotic formulation has a first-order approximation with respect to turbulence intensity. Verifications with numerical solutions and an observed fog event showed that it is more accurate for weak turbulence than for strong turbulence and that the computed LWC generally agrees with the observed LWC in magnitude.
    publisherAmerican Meteorological Society
    titleAsymptotic Analysis of Equilibrium in Radiation Fog
    typeJournal Paper
    journal volume47
    journal issue6
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2007JAMC1685.1
    journal fristpage1704
    journal lastpage1722
    treeJournal of Applied Meteorology and Climatology:;2008:;volume( 047 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian