YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Exploratory Study to Derive Precipitation over Land from X-Band Synthetic Aperture Radar Measurements

    Source: Journal of Applied Meteorology and Climatology:;2008:;volume( 047 ):;issue: 002::page 562
    Author:
    Weinman, J. A.
    ,
    Marzano, F. S.
    DOI: 10.1175/2007JAMC1663.1
    Publisher: American Meteorological Society
    Abstract: Global precipitation measurements from space-based radars and microwave radiometers have been the subject of numerous studies during the past decade. Rainfall retrievals over land from spaceborne microwave radiometers depend mainly on scattering from frozen hydrometeors. Unfortunately, the relationship between frozen hydrometeors and rainfall varies considerably. The large field of view and related beam filling of microwave radiometer footprints introduce additional difficulties. Some of these problems will be addressed by the improved sensors that will be placed on the Global Precipitation Measurement (GPM) core satellite. Two shuttle missions demonstrated that X-band synthetic aperture radar (X-SAR) could observe rainfall over land. Several X-band SARs that can provide such measurements will be launched in the coming decade. These include four Constellation of Small Satellites for Mediterranean Basin Observations (COSMO-SkyMed), two TerraSAR-X, and a fifth Korea Multipurpose Satellite (KOMPSAT-5) to be launched by the Italian, German, and Korean Space Agencies, respectively. Data from these satellites could augment the information available to the GPM science community. The present study presents computations of normalized radar cross sections (NRCS) that employed a simple, idealized two-layer cloud model that contained both rain and frozen hydrometeors. The modeled spatial distributions of these hydrometeors varied with height and horizontal distance. An exploratory algorithm was developed to retrieve the shape, width, and simple representations of the vertical profiles of frozen hydrometeors and rain from modeled NRCS scans. A discussion of uncertainties in the retrieval is presented.
    • Download: (1.094Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Exploratory Study to Derive Precipitation over Land from X-Band Synthetic Aperture Radar Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206585
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorWeinman, J. A.
    contributor authorMarzano, F. S.
    date accessioned2017-06-09T16:18:15Z
    date available2017-06-09T16:18:15Z
    date copyright2008/02/01
    date issued2008
    identifier issn1558-8424
    identifier otherams-65368.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206585
    description abstractGlobal precipitation measurements from space-based radars and microwave radiometers have been the subject of numerous studies during the past decade. Rainfall retrievals over land from spaceborne microwave radiometers depend mainly on scattering from frozen hydrometeors. Unfortunately, the relationship between frozen hydrometeors and rainfall varies considerably. The large field of view and related beam filling of microwave radiometer footprints introduce additional difficulties. Some of these problems will be addressed by the improved sensors that will be placed on the Global Precipitation Measurement (GPM) core satellite. Two shuttle missions demonstrated that X-band synthetic aperture radar (X-SAR) could observe rainfall over land. Several X-band SARs that can provide such measurements will be launched in the coming decade. These include four Constellation of Small Satellites for Mediterranean Basin Observations (COSMO-SkyMed), two TerraSAR-X, and a fifth Korea Multipurpose Satellite (KOMPSAT-5) to be launched by the Italian, German, and Korean Space Agencies, respectively. Data from these satellites could augment the information available to the GPM science community. The present study presents computations of normalized radar cross sections (NRCS) that employed a simple, idealized two-layer cloud model that contained both rain and frozen hydrometeors. The modeled spatial distributions of these hydrometeors varied with height and horizontal distance. An exploratory algorithm was developed to retrieve the shape, width, and simple representations of the vertical profiles of frozen hydrometeors and rain from modeled NRCS scans. A discussion of uncertainties in the retrieval is presented.
    publisherAmerican Meteorological Society
    titleAn Exploratory Study to Derive Precipitation over Land from X-Band Synthetic Aperture Radar Measurements
    typeJournal Paper
    journal volume47
    journal issue2
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/2007JAMC1663.1
    journal fristpage562
    journal lastpage575
    treeJournal of Applied Meteorology and Climatology:;2008:;volume( 047 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian