YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Realizations of Daily Weather in Forecast Seasonal Climate

    Source: Journal of Hydrometeorology:;2002:;Volume( 003 ):;issue: 002::page 195
    Author:
    Wilks, D. S.
    DOI: 10.1175/1525-7541(2002)003<0195:RODWIF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Stochastic daily weather time series models (??weather generators??) are parameterized consistent with both local climate and probabilistic seasonal forecasts. Both single-station weather generators, and spatial networks of coherently operating weather generators, are considered. Only a subset of parameters for individual station models (proportion of wet days, precipitation mean parameters on wet days, and daily temperature means and standard deviations) are found to depend appreciably on the seasonal temperature and precipitation outcomes, so that extension of the single-station models to coherent multisite weather generators is straightforward. The result allows stochastic simulation of multiple daily weather series, conditional on seasonal forecasts. Example applications of spatially integrated extreme daily precipitation and snowpack water content are used to illustrate the method.
    • Download: (260.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Realizations of Daily Weather in Forecast Seasonal Climate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206207
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorWilks, D. S.
    date accessioned2017-06-09T16:17:13Z
    date available2017-06-09T16:17:13Z
    date copyright2002/04/01
    date issued2002
    identifier issn1525-755X
    identifier otherams-65027.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206207
    description abstractStochastic daily weather time series models (??weather generators??) are parameterized consistent with both local climate and probabilistic seasonal forecasts. Both single-station weather generators, and spatial networks of coherently operating weather generators, are considered. Only a subset of parameters for individual station models (proportion of wet days, precipitation mean parameters on wet days, and daily temperature means and standard deviations) are found to depend appreciably on the seasonal temperature and precipitation outcomes, so that extension of the single-station models to coherent multisite weather generators is straightforward. The result allows stochastic simulation of multiple daily weather series, conditional on seasonal forecasts. Example applications of spatially integrated extreme daily precipitation and snowpack water content are used to illustrate the method.
    publisherAmerican Meteorological Society
    titleRealizations of Daily Weather in Forecast Seasonal Climate
    typeJournal Paper
    journal volume3
    journal issue2
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/1525-7541(2002)003<0195:RODWIF>2.0.CO;2
    journal fristpage195
    journal lastpage207
    treeJournal of Hydrometeorology:;2002:;Volume( 003 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian