YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamical Tropical Cyclone Track Forecast Errors. Part I: Tropical Region Error Sources

    Source: Weather and Forecasting:;2000:;volume( 015 ):;issue: 006::page 641
    Author:
    Carr, Lester E.
    ,
    Elsberry, Russell L.
    DOI: 10.1175/1520-0434(2000)015<0641:DTCTFE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: All highly erroneous (>300 n mi or 555 km at 72 h) Navy Operational Global Atmospheric Prediction System (NOGAPS) and U.S. Navy version of the Geophysical Fluid Dynamics Laboratory model (GFDN) tropical cyclone track forecasts in the western North Pacific during 1997 are examined. Responsible error mechanisms are described by conceptual models that are all related to known tropical cyclone motion processes that are being misrepresented in the dynamical models. Error mechanisms that predominantly occur while the tropical cyclone is still in the Tropics are described in this paper, and those errors that are more related to midlatitude circulations are addressed in a companion paper. Of the 69 NOGAPS large-error cases, 39 were attributed to excessive direct cyclone interaction (E-DCI), 12 cases of excessive ridge modification by the tropical cyclone (E-RMT), and 10 cases of excessive reverse trough formation (E-RTF). Of the 50 GFDN large-error cases, 31 were E-DCI, and only two E-RMT and two E-RTF cases were found, but 9 cases involving a single cyclone were attributed to excessive tropical cyclone size (E-TCS). Characteristics and symptoms in the forecast tracks and model fields that accompany these frequently occurring error mechanisms are documented and illustrative case studies are presented. When a sudden deviation from previous track guidance or a track outlier from the other dynamical model guidance appears, the forecaster should diagnose whether this is an error, or is indicative of a real track change. If the conceptual models of large-error mechanisms proposed from this retrospective study can be applied in real time, track forecasting will be improved.
    • Download: (2.159Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamical Tropical Cyclone Track Forecast Errors. Part I: Tropical Region Error Sources

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4168923
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorCarr, Lester E.
    contributor authorElsberry, Russell L.
    date accessioned2017-06-09T14:59:26Z
    date available2017-06-09T14:59:26Z
    date copyright2000/12/01
    date issued2000
    identifier issn0882-8156
    identifier otherams-3147.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4168923
    description abstractAll highly erroneous (>300 n mi or 555 km at 72 h) Navy Operational Global Atmospheric Prediction System (NOGAPS) and U.S. Navy version of the Geophysical Fluid Dynamics Laboratory model (GFDN) tropical cyclone track forecasts in the western North Pacific during 1997 are examined. Responsible error mechanisms are described by conceptual models that are all related to known tropical cyclone motion processes that are being misrepresented in the dynamical models. Error mechanisms that predominantly occur while the tropical cyclone is still in the Tropics are described in this paper, and those errors that are more related to midlatitude circulations are addressed in a companion paper. Of the 69 NOGAPS large-error cases, 39 were attributed to excessive direct cyclone interaction (E-DCI), 12 cases of excessive ridge modification by the tropical cyclone (E-RMT), and 10 cases of excessive reverse trough formation (E-RTF). Of the 50 GFDN large-error cases, 31 were E-DCI, and only two E-RMT and two E-RTF cases were found, but 9 cases involving a single cyclone were attributed to excessive tropical cyclone size (E-TCS). Characteristics and symptoms in the forecast tracks and model fields that accompany these frequently occurring error mechanisms are documented and illustrative case studies are presented. When a sudden deviation from previous track guidance or a track outlier from the other dynamical model guidance appears, the forecaster should diagnose whether this is an error, or is indicative of a real track change. If the conceptual models of large-error mechanisms proposed from this retrospective study can be applied in real time, track forecasting will be improved.
    publisherAmerican Meteorological Society
    titleDynamical Tropical Cyclone Track Forecast Errors. Part I: Tropical Region Error Sources
    typeJournal Paper
    journal volume15
    journal issue6
    journal titleWeather and Forecasting
    identifier doi10.1175/1520-0434(2000)015<0641:DTCTFE>2.0.CO;2
    journal fristpage641
    journal lastpage661
    treeWeather and Forecasting:;2000:;volume( 015 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian