| description abstract | All highly erroneous (>300 n mi or 555 km at 72 h) Navy Operational Global Atmospheric Prediction System (NOGAPS) and U.S. Navy version of the Geophysical Fluid Dynamics Laboratory model (GFDN) tropical cyclone track forecasts in the western North Pacific during 1997 are examined. Responsible error mechanisms are described by conceptual models that are all related to known tropical cyclone motion processes that are being misrepresented in the dynamical models. Error mechanisms that predominantly occur while the tropical cyclone is still in the Tropics are described in this paper, and those errors that are more related to midlatitude circulations are addressed in a companion paper. Of the 69 NOGAPS large-error cases, 39 were attributed to excessive direct cyclone interaction (E-DCI), 12 cases of excessive ridge modification by the tropical cyclone (E-RMT), and 10 cases of excessive reverse trough formation (E-RTF). Of the 50 GFDN large-error cases, 31 were E-DCI, and only two E-RMT and two E-RTF cases were found, but 9 cases involving a single cyclone were attributed to excessive tropical cyclone size (E-TCS). Characteristics and symptoms in the forecast tracks and model fields that accompany these frequently occurring error mechanisms are documented and illustrative case studies are presented. When a sudden deviation from previous track guidance or a track outlier from the other dynamical model guidance appears, the forecaster should diagnose whether this is an error, or is indicative of a real track change. If the conceptual models of large-error mechanisms proposed from this retrospective study can be applied in real time, track forecasting will be improved. | |