YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Stability of Eady's Model

    Source: Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 023::page 3427
    Author:
    Mu, Mu
    ,
    Shepherd, Theodore G.
    DOI: 10.1175/1520-0469(1994)051<3427:NSOEM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A nonlinear stability theorem is established for Eady's model of baroclinic flow. In particular, the Eady basic state is shown to be nonlinearly stable (for arbitrary shear) provided (?z)/(?y) > 2(5)^1/2f/(πN),where ?z is the height of the domain, ?y the channel width, f the Coriolis parameter, and N the buoyancy frequency. When this criterion is satisfied, explicit bounds can be derived on the disturbance potential enstrophy, the disturbance energy, and the disturbance available potential energy on the rigid lids, which are expressed in terms of the initial disturbance fields. The disturbances are completely general (with nonzero potential vorticity) and are not assumed to be of small amplitude. The results may be regarded as an extension of Arnol'd's second nonlinear stability theorem to continuously stratified quasigeostrophic baroclinic flow.
    • Download: (596.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Stability of Eady's Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4157648
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMu, Mu
    contributor authorShepherd, Theodore G.
    date accessioned2017-06-09T14:32:38Z
    date available2017-06-09T14:32:38Z
    date copyright1994/12/01
    date issued1994
    identifier issn0022-4928
    identifier otherams-21321.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4157648
    description abstractA nonlinear stability theorem is established for Eady's model of baroclinic flow. In particular, the Eady basic state is shown to be nonlinearly stable (for arbitrary shear) provided (?z)/(?y) > 2(5)^1/2f/(πN),where ?z is the height of the domain, ?y the channel width, f the Coriolis parameter, and N the buoyancy frequency. When this criterion is satisfied, explicit bounds can be derived on the disturbance potential enstrophy, the disturbance energy, and the disturbance available potential energy on the rigid lids, which are expressed in terms of the initial disturbance fields. The disturbances are completely general (with nonzero potential vorticity) and are not assumed to be of small amplitude. The results may be regarded as an extension of Arnol'd's second nonlinear stability theorem to continuously stratified quasigeostrophic baroclinic flow.
    publisherAmerican Meteorological Society
    titleNonlinear Stability of Eady's Model
    typeJournal Paper
    journal volume51
    journal issue23
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1994)051<3427:NSOEM>2.0.CO;2
    journal fristpage3427
    journal lastpage3436
    treeJournal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian