contributor author | Mu, Mu | |
contributor author | Shepherd, Theodore G. | |
date accessioned | 2017-06-09T14:32:38Z | |
date available | 2017-06-09T14:32:38Z | |
date copyright | 1994/12/01 | |
date issued | 1994 | |
identifier issn | 0022-4928 | |
identifier other | ams-21321.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4157648 | |
description abstract | A nonlinear stability theorem is established for Eady's model of baroclinic flow. In particular, the Eady basic state is shown to be nonlinearly stable (for arbitrary shear) provided (?z)/(?y) > 2(5)^1/2f/(πN),where ?z is the height of the domain, ?y the channel width, f the Coriolis parameter, and N the buoyancy frequency. When this criterion is satisfied, explicit bounds can be derived on the disturbance potential enstrophy, the disturbance energy, and the disturbance available potential energy on the rigid lids, which are expressed in terms of the initial disturbance fields. The disturbances are completely general (with nonzero potential vorticity) and are not assumed to be of small amplitude. The results may be regarded as an extension of Arnol'd's second nonlinear stability theorem to continuously stratified quasigeostrophic baroclinic flow. | |
publisher | American Meteorological Society | |
title | Nonlinear Stability of Eady's Model | |
type | Journal Paper | |
journal volume | 51 | |
journal issue | 23 | |
journal title | Journal of the Atmospheric Sciences | |
identifier doi | 10.1175/1520-0469(1994)051<3427:NSOEM>2.0.CO;2 | |
journal fristpage | 3427 | |
journal lastpage | 3436 | |
tree | Journal of the Atmospheric Sciences:;1994:;Volume( 051 ):;issue: 023 | |
contenttype | Fulltext | |