YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimation of Wind Speed Distribution Using Markov Chain Monte Carlo Techniques

    Source: Journal of Applied Meteorology:;2001:;volume( 040 ):;issue: 008::page 1476
    Author:
    Pang, Wan-Kai
    ,
    Forster, Jonathan J.
    ,
    Troutt, Marvin D.
    DOI: 10.1175/1520-0450(2001)040<1476:EOWSDU>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Weibull distribution is the most commonly used statistical distribution for describing wind speed data. Maximum likelihood has traditionally been the main method of estimation for Weibull parameters. In this paper, Markov chain Monte Carlo techniques are used to carry out a Bayesian estimation procedure using wind speed data obtained from the Observatory of Hong Kong. The method is extremely flexible. Inference for any quantity of interest is routinely available, and it can be adapted easily when data are truncated.
    • Download: (141.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimation of Wind Speed Distribution Using Markov Chain Monte Carlo Techniques

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148440
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorPang, Wan-Kai
    contributor authorForster, Jonathan J.
    contributor authorTroutt, Marvin D.
    date accessioned2017-06-09T14:08:00Z
    date available2017-06-09T14:08:00Z
    date copyright2001/08/01
    date issued2001
    identifier issn0894-8763
    identifier otherams-13034.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148440
    description abstractThe Weibull distribution is the most commonly used statistical distribution for describing wind speed data. Maximum likelihood has traditionally been the main method of estimation for Weibull parameters. In this paper, Markov chain Monte Carlo techniques are used to carry out a Bayesian estimation procedure using wind speed data obtained from the Observatory of Hong Kong. The method is extremely flexible. Inference for any quantity of interest is routinely available, and it can be adapted easily when data are truncated.
    publisherAmerican Meteorological Society
    titleEstimation of Wind Speed Distribution Using Markov Chain Monte Carlo Techniques
    typeJournal Paper
    journal volume40
    journal issue8
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(2001)040<1476:EOWSDU>2.0.CO;2
    journal fristpage1476
    journal lastpage1484
    treeJournal of Applied Meteorology:;2001:;volume( 040 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian