Show simple item record

contributor authorPang, Wan-Kai
contributor authorForster, Jonathan J.
contributor authorTroutt, Marvin D.
date accessioned2017-06-09T14:08:00Z
date available2017-06-09T14:08:00Z
date copyright2001/08/01
date issued2001
identifier issn0894-8763
identifier otherams-13034.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148440
description abstractThe Weibull distribution is the most commonly used statistical distribution for describing wind speed data. Maximum likelihood has traditionally been the main method of estimation for Weibull parameters. In this paper, Markov chain Monte Carlo techniques are used to carry out a Bayesian estimation procedure using wind speed data obtained from the Observatory of Hong Kong. The method is extremely flexible. Inference for any quantity of interest is routinely available, and it can be adapted easily when data are truncated.
publisherAmerican Meteorological Society
titleEstimation of Wind Speed Distribution Using Markov Chain Monte Carlo Techniques
typeJournal Paper
journal volume40
journal issue8
journal titleJournal of Applied Meteorology
identifier doi10.1175/1520-0450(2001)040<1476:EOWSDU>2.0.CO;2
journal fristpage1476
journal lastpage1484
treeJournal of Applied Meteorology:;2001:;volume( 040 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record