YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Automated Cloud Classification of Global AVHRR Data Using a Fuzzy Logic Approach

    Source: Journal of Applied Meteorology:;1997:;volume( 036 ):;issue: 011::page 1519
    Author:
    Baum, Bryan A.
    ,
    Tovinkere, Vasanth
    ,
    Titlow, Jay
    ,
    Welch, Ronald M.
    DOI: 10.1175/1520-0450(1997)036<1519:ACCOGA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A fuzzy logic classification (FLC) methodology is proposed to achieve the two goals of this paper: 1) to discriminate between clear sky and clouds in a 32 ? 32 pixel array, or sample, of 1.1-km Advanced Very High Resolution Radiometer (AVHRR) data, and 2) if clouds are present, to discriminate between single-layered and multilayered clouds within the sample. To achieve these goals, eight FLC modules are derived that are based broadly on airmass type and surface type (land or water): equatorial over land, marine tropical over land, marine tropical/equatorial over water, continental tropical over land, marine polar over land, marine polar over water, continental polar over land, and continental polar/arctic over water. Derivation of airmass type is performed using gridded analyses provided by the National Centers for Environmental Prediction. The training and testing data used by the FLC are collected from more than 150 daytime AVHRR local area coverage scenes recorded between 1991 and 1994 over all seasons and over all continents and oceans. A total of 190 textural and spectral features are computed from the AVHRR data. A forward feature selection method is implemented to reduce the number of features used to discriminate between classes in each FLC module. The number of features selected ranges from 13 (marine tropical over land) to 24 (marine tropical/equatorial over water). An estimate of the classifier accuracy is determined using the hold-one-out method in which the classifier is trained with all but one of the data samples; the classifier is applied subsequently to the remaining sample. The overall accuracies of the eight classification modules are calculated by dividing the number of correctly classified samples by the total number of manually labeled samples of clear-sky and single-layer clouds. Individual module classification accuracies are as follows: equatorial over land (86.2%), marine tropical over land (85.6%), marine tropical/equatorial over water (88.6%), continental tropical over land (87.4%), marine polar over land (86.8%), marine polar over water (84.8%), continental polar over land (91.1%), and continental polar/arctic over water (89.8%). Single-level cloud samples misclassified as multilayered clouds range between 0.5% (continental polar over land) and 3.4% (marine polar over land) for the eight airmass modules. Classification accuracies for a set of labeled multilayered cloud samples range between 64% and 81% for six of the eight airmass modules (excluded are the continental polar over land and continental polar/arctic over water modules, for which multilayered cloud samples are difficult to find). The results indicate that the FLC has an encouraging ability to distinguish between single-level and multilayered clouds.
    • Download: (335.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Automated Cloud Classification of Global AVHRR Data Using a Fuzzy Logic Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147906
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorBaum, Bryan A.
    contributor authorTovinkere, Vasanth
    contributor authorTitlow, Jay
    contributor authorWelch, Ronald M.
    date accessioned2017-06-09T14:06:27Z
    date available2017-06-09T14:06:27Z
    date copyright1997/11/01
    date issued1997
    identifier issn0894-8763
    identifier otherams-12554.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147906
    description abstractA fuzzy logic classification (FLC) methodology is proposed to achieve the two goals of this paper: 1) to discriminate between clear sky and clouds in a 32 ? 32 pixel array, or sample, of 1.1-km Advanced Very High Resolution Radiometer (AVHRR) data, and 2) if clouds are present, to discriminate between single-layered and multilayered clouds within the sample. To achieve these goals, eight FLC modules are derived that are based broadly on airmass type and surface type (land or water): equatorial over land, marine tropical over land, marine tropical/equatorial over water, continental tropical over land, marine polar over land, marine polar over water, continental polar over land, and continental polar/arctic over water. Derivation of airmass type is performed using gridded analyses provided by the National Centers for Environmental Prediction. The training and testing data used by the FLC are collected from more than 150 daytime AVHRR local area coverage scenes recorded between 1991 and 1994 over all seasons and over all continents and oceans. A total of 190 textural and spectral features are computed from the AVHRR data. A forward feature selection method is implemented to reduce the number of features used to discriminate between classes in each FLC module. The number of features selected ranges from 13 (marine tropical over land) to 24 (marine tropical/equatorial over water). An estimate of the classifier accuracy is determined using the hold-one-out method in which the classifier is trained with all but one of the data samples; the classifier is applied subsequently to the remaining sample. The overall accuracies of the eight classification modules are calculated by dividing the number of correctly classified samples by the total number of manually labeled samples of clear-sky and single-layer clouds. Individual module classification accuracies are as follows: equatorial over land (86.2%), marine tropical over land (85.6%), marine tropical/equatorial over water (88.6%), continental tropical over land (87.4%), marine polar over land (86.8%), marine polar over water (84.8%), continental polar over land (91.1%), and continental polar/arctic over water (89.8%). Single-level cloud samples misclassified as multilayered clouds range between 0.5% (continental polar over land) and 3.4% (marine polar over land) for the eight airmass modules. Classification accuracies for a set of labeled multilayered cloud samples range between 64% and 81% for six of the eight airmass modules (excluded are the continental polar over land and continental polar/arctic over water modules, for which multilayered cloud samples are difficult to find). The results indicate that the FLC has an encouraging ability to distinguish between single-level and multilayered clouds.
    publisherAmerican Meteorological Society
    titleAutomated Cloud Classification of Global AVHRR Data Using a Fuzzy Logic Approach
    typeJournal Paper
    journal volume36
    journal issue11
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1997)036<1519:ACCOGA>2.0.CO;2
    journal fristpage1519
    journal lastpage1540
    treeJournal of Applied Meteorology:;1997:;volume( 036 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian